Near surface circulation and downward ocean heat pumping induced by Tropical Cyclones in the Bay of Bengal

University of Colorado, Boulder, Co, USA Weiging Han

IOGOOS, Oct 18-20, 2012, Cape Town, South Africa

- Tropical Cyclones (TCs) of the BoB have strong societal & economic consequences;
- Climatically, TCs mixing agent pump heat downward into the tropical Thermocline, and then transport poleward, playing an important role in regulating global meridional ocean heat transport & heat balance (Emanuel 2001; Sriver and Huber 2007; Sriver et al. 2008).
- 3 Steps are suggested to be involved in this scenario:

Based on this, Sriver & Huber (2007), Sriver et al. (2008) estimated global TCs DOHP

Question: Is this scenario hold for the Indian Ocean, especially the Bay of Bengal, where freshwater flux is important and barrier layer exist?

Goal:

•Understand the upper ocean response & processes to TC forcing in the Bay of Bengal (BoB);

•Quantify the BoB TCs Downward Ocean Heat Pumping (DOHP), & compare with the estimates of Sriver & Huber (2007), Sriver et al. (2008) using SST & fixed or climatological hm.

2. Approach

Ocean General Circulation Model (OGCM) experiments: (i)Lack of 3-D, spatially & temporally continuous observations; (ii) OGCM – isolate TC effects

a)OGCM: 0.25°x0.25° eddy permitting HYCOM, 32 vertical layers for the Indian Ocean basin

Forcing: 6-hourly multi-satellite Merged 0.25°x0.25° CCMP wind, TRMM rain, 0.7°x0.7° ERA-I Other fields.

TRMM Precipitation & TC Tracks

b) The two TCs
during October
1999, landed
near Orissa,
India in the
BoB

Importance of in situ measurement:

Satellite: can not Observe high wind associated with strong rain

c) HYCOM Experiments

Group	Model Runs	Forcings	Space Ramping	Time Ramping	Study Purpose
A	MR	air temperature, radiative flux, and humidity from ERAI; wind from CCMP; rain rate from ERAI before 1998, from TRMM since 1998	None	None	Model/data comparison
A & B	RcWIND	wind speed and stress re-constructed for high wind period of TC1 and TC2	2 times of 35-kt radius	None	Model/data comparison and effect of wind
В	NoWIND	wind speed and stress filtered for TC1 and TC2	70°E-75°E, 105°E-110°E, 0°-5°N.	Before TC1 and after TC2	Wind processes (mixing, transport, fluxes, etc.)
в	NoRAIN	precipitation filtered for TC1 and TC2	70°E-75°E, 105°E-110°E, 0°-5°N	before and after TC2	Effect of rain
в	NoRAD	radiative fluxes filtered for TC1 and TC2	70°E-75°E, 105°E-110°E, 0°-5°N	before and after TC2	Effect of radiation
в	NoTC	all the forcings filtered for TC1 and TC2	70°E-75°E, 105°E-110°E, 0°-5°N	before and after TC2	Total TC effects
С	NoWSTR	wind stress filtered for TC1 and TC2	70°E-75°E, 105°E-110°E, 0°-5°N.	Before TC1 and after TC2	Wind processes (mixing, transport, etc.)
С	NoWSPD	wind speed filtered for TC1 and TC2	70°E-75°E, 105°E-110°E, 0°-5°N.	Before TC1 and after TC2	Wind effect on surface heat flux

-

—.

3. Results a) Model/data Comparison SST (after-before) TCs SST Change, After-Before TC1 SST Change, After-Before TC2 d. TMI TMI a. 2.5 1.5 0.5 -0.5 RcWIND RcWIND b. -1 -1.5 -2 -2.5 Ch -3

Observed/simulated Temp profiles at various locations & times of the Southern Bay:

Red: observed Black: RcWIND Exp

Thanks for Dr. Luc Bujold for providing buoy and cruise observation data

24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 °C

c) Impact of TCs on the BoB Ocean heat content (OHC)

From Emanuel 2001

c) Impact of TCs on the BoB Ocean heat content (OHC)

Nov. 3 mean of SST Change due to TCs

MR-NoWIND

HYCOM SST Change by TC-associated Forcings

RcWIND-NoWIND

4. Summary

- The rightward bias of TC-induced surface cooling is caused by the asymmetry of both upwelling (+advection) and vertical mixing process;
- •The DOHP is an order of magnitude weaker than that estimated by the observed SST before/after TCs, due to barrier layer formation and the large effect of solar radiation associated with the TCs.
- IOGOOS in situ 3-D sustained observations, combined with Model experiments, is important for advancing our understanding and improved prediction of the Indian Ocean processes & its role in regional/global climate

Thank you for your attention!

Evolutions of T – profile during TC1

-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 mm/s -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 Kiday

OBS AVISO SSHA

Model SSHA & wind

b) SSHA & V (0-30m) induced by TC1

