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Abstract
The National Centers for Environmental Prediction (NCEP) produces operational reanalysis products based on the Global 
Ocean Data Assimilation System (GODAS) with the Modular Ocean Model (MOM3/MOM4p0d) as a physical model and 
3D-Var as the data assimilation method. The Indian National Center for Ocean Information Services (INCOIS) also produces 
operational ocean analysis with the same GODAS with MOM4p0d. In this study, GODAS is upgraded with MOM5. The 
improved reanalysis is compared with respect to the EN4 and Ocean ReAnalysis System 5 (ORAS5) for the subsurface tem-
perature and salinity. The microwave-based satellite-derived sea surface temperature (SST) is employed for the independent 
evaluation of the reanalysis SST products. We have assimilated observed temperature and salinity profiles from all in situ 
platforms over the global ocean and also assimilated along-track sea level anomaly from altimeter (Jason1 and Jason2) to 
produce the improved reanalysis. There is a significant improvement in the SST with biases of temperatures reduced from 1.5 
to ~ 0.2 °C as compared to without assimilation. Moreover, a significant improvement is found in the subsurface temperature 
and salinity fields over the northwest Atlantic and Pacific Ocean, Nino 3.4, and Indian Ocean thermocline ridge regions. 
The biases in this new, improved reanalysis are even lower than ORAS5 when compared with EN4 analysis. Thermocline 
depth also shows improvement in terms of better representation and capturing seasonal variability. Altimeter assimilation 
further reduces Root Mean Square Deviation (RMSD) in SST over the global ocean. We also show the improvement in the 
new reanalysis with respect to the reanalysis based on MOM4p0d.
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Introduction

Ocean and sea ice analyses and reanalyses are reconstruc-
tions of the ocean and sea ice states using an ocean general 
circulation model integration by atmospheric surface forc-
ing and ocean observations via a data assimilation (DA) 
method. DA of the global ocean typically suffers from 
multiple sources of error, including sparse observations, 
representativeness errors due to the model resolution, poor 
estimation of background errors, and structural model 
errors (Storto et al. 2018, 2019). Over the last decade, 
the performance of ocean analyses and reanalyses has 
improved mainly due to (a) increased model resolution, 
(b) improved parameterization of unresolved physics in 
the models, (c) improved accuracy in forcing from new 
atmospheric reanalyses (e.g., ERA-I: Dee et  al. 2011; 
JRA55: Tsujino et al. 2018; DRAKKAR: Brodeau et al. 
2010), (d) improved quality-controlled observation data 
sets; and finally (e) advances in DA methods (Storto et al. 
2018, 2019).

Ocean reanalyses are a valuable tool for monitoring and 
understanding long-term ocean variability particularly at 
deeper ocean (Cipollone et al. 2017), because this part of 
the ocean is still largely unobserved. Deep and abyssal 
circulations are crucial for several climate indexes (Masina 
et al. 2011) that can affect predictability over long time 
scales. Ocean reanalyses have been used for the initiali-
zation of ocean and sea ice components of seasonal to 
decadal forecasting systems (e.g., at India Meteorologi-
cal Department (IMD), Met Office, European Centre for 
Medium-Range Weather Forecasts (ECMWF), National 
Center for Atmospheric Research (NCAR), Geophysical 
Fluid Dynamics Laboratory (GFDL), The Euro-Mediter-
ranean Center on Climate Change (CMCC), Meteo France, 
etc.). The importance of the role of the ocean and sea ice 
in initialization is indeed widely accepted (Balmaseda 
2017; Balmaseda et al. 2009, 2015). Despite the growing 
community interest, ocean reanalyses, and the ocean com-
ponent of coupled reforecasts and hindcast, are underuti-
lized compared to the atmospheric component. Efforts are 
being made, for instance, by Copernicus Climate Change 
Service (C3S), to release the ocean reanalysis component 
in a timelier manner. The free access to the error growth of 
the forecast components has led to a better assessment of 
forecasting error and bias correction (Storto et al. 2019).

Coupled General Circulation Models (CGCMs) used 
for the Indian Summer Monsoon Rainfall (ISMR) forecast 
(Pokhrel et al. 2013; Saha et al. 2014, 2019). Although 
CGCMs outperform Atmospheric General Circulation 
Models (AGCMs) in representing the coupled feedback 
mechanisms of the Earth (Chaudhari et al. 2013, 2015), 
ISMR prediction skill is still very low despite all the 

efforts devoted to its improvement (Pokhrel et al. 2016). 
One of the reasons for the poor performance of these 
CGCMs in predicting ISMR is the initialization strategy 
(Saha et al. 2016, 2019). A variation in ISMR prediction 
skill by National Centers for Environmental Prediction 
(NCEP) Climate Forecast System version 2 (CFSv2) at 
different lead months (0–3 months) is found to be linked 
with the combined effects of initial Eurasian snow cover 
area and sea surface temperature (SST) over the tropical 
Indian and Pacific oceans (Saha et al. 2016). Several stud-
ies show that the El Niño Southern Oscillation (ENSO) is 
the strongest predictor on the earth, affecting the weather 
and climate globally on seasonal, inter-annual, and dec-
adal time scales (Philander 1990). Also, past studies have 
revealed that the interannual variability of ISMR is linked 
with the ENSO phenomenon (Sikka 1980; Angell 1981; 
Rasmusson and Carpenter 1983; Ropelewski and Halpert 
1987, 1989; Shukla 1987) and about 50% of droughts in 
India are associated with ENSO (Kripalani and Kulkarni 
1996). Despite ENSO originating and developing in the 
eastern and central Pacific, it influences the global weather 
and climate, particularly on the regional scale of precipita-
tion variability in the continents (e.g., Rasmusson and Car-
penter1982; Bradley et al. 1987; Ropelewski and Halpert 
1987, 1989; Trenberth et al. 1998; Jin et al. 2008; Tang 
et al. 2018).

Due to its global impact, skillful ENSO prediction well 
in advance offers policymakers the ability to consider 
anticipated climate anomalies and define contingency plans 
due to their adverse effects on society and the economy. 
Coupled models are now widely used for studying ENSO 
mechanisms, simulation, and prediction. Various coupled 
models have been designed and used for ENSO simulation 
and prediction. These coupled models include simple mod-
els (e.g., Hirst 1986), intermediate coupled models (e.g., 
Zebiak and Cane 1987), hybrid coupled models (e.g., Bar-
nett et al. 1993; Tang and Hsieh 2002), and fully CGCMs 
(e.g., Jin et al. 2008; Barnston et al. 2012; Luo et al. 2016). 
Climate Prediction Centre of National Oceanic and Atmos-
pheric Administration (NOAA), NCEP, and the International 
Research Institute for Climate and Society (IRI) routinely 
used dynamical and statistical models to make real-time 
forecasts of ENSO. Currently, around 18 models with dif-
ferent degrees of complexity from different state-of-the-art 
operational centers across the world are used for skillful sea-
sonal ENSO predictions at six months and longer time scales 
lead time at IRI (Barnston et al. 2012; Tang et al. 2018).

The large-scale climate variability associated with ENSO 
is connected to the slow oscillatory phenomena of the cou-
pled atmosphere–ocean system in the Tropics. Rosati et al. 
(1997), using a coupled model, showed the importance of 
correctly representing the initial state of the ocean for ENSO 
prediction. The “memory” (inertia) of this system resides in 
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the upper ocean (~ 250 m), which has a much longer time-
scale than the atmosphere (Rosati et al. 1997). Thus, it is 
crucial to determine the initial oceanic state as accurately as 
possible in order to initialize the coupled models mentioned 
above. This study explores this aspect to produce a realistic 
reanalysis using GODAS.

Several studies reasonably well predicted the Indian 
Ocean Dipole (IOD) and its global influence based on 
CGCMs (Liu et al. 2011, 2017; Yang et al. 2015). Those 
studies found that the IOD could be predicted one season in 
advance. However, some operational CGCMs, e.g., NCEP 
Climate Forecast System version 2 (CFSv2), still lack the 
skill to be significantly better than persistence in predict-
ing IOD events, as seen in 1982–2009 hindcast results (Zhu 
et al. 2015). The reason behind this may also be due to inac-
curate initial conditions. Doi et al. (2017) demonstrated the 
importance of improved ocean analyses in the realistic pre-
diction of IOD. Hence, there is evidence that improvements 
in ocean analyses can improve seasonal ISMR and IOD 
prediction. The skill of climate system forecasts at the sub-
seasonal to seasonal (S2S) timescales largely depends on the 
ocean's initial conditions and, in particular, the upper ocean 
thermal structure. S2S forecasting is now a routine activ-
ity in several operational centers around the world, requir-
ing near-real-time knowledge of the ocean state. Hence, we 
anticipate that any improvement in upper ocean reanalyses 
may improve the seasonal ISMR prediction since half of the 
gain in forecast skill is due to improved ocean initialization 
(Balmaseda et al. 2010).

The Indian National Centre for Ocean Information Ser-
vices (INCOIS) provides near real-time global ocean analy-
ses based on MOM4p0d (Ravichandran et al. 2013) using the 
3D-Var assimilation system GODAS adopted from NCEP. 
The INCOIS-GODAS analysis provides the initial condi-
tions to the Indian Institute of Tropical Meteorology (IITM) 
for the initialization of the coupled model CFSv2, which is 
used for seasonal prediction of the ISMR (Rao et al. 2019). 
The accuracy of the GODAS 3D-Var analysis depends upon 
the background error covariance and observation error 
covariance matrices. The background error covariance can 
be estimated from model simulations, and consequently, this 
estimate can be improved by upgrading the model (Stammer 
et al. 2010). Rahaman et al. (2016, 2018) have shown the 
impact of upgraded model simulations on the ocean rea-
nalysis/analyses by using the MOM4p1 version (Griffies 
2009) with respect to MOM4p0d (Griffies et al. 2004) in 
NCEP’s GODAS. Further, Pokhrel et al. (2024) have shown 
improved ISMR skills with this improved reanalysis based 
on MOM4p1. In 2012, a more advanced version, MOM5 
was released. Here, we upgrade the physical model used by 
the GODAS to MOM5. Presently, temperature and salinity 
profiles from all in-situ observations over the global ocean 
are assimilated into the operational  INCOIS-GODAS. 

However, schemes to assimilate altimeter-derived along-
track sea surface height (SSH) observations had not yet been 
implemented in the present INCOIS-GODAS operational 
analysis products (Ravichandran et al. 2013). Hence, apart 
from upgrading the GODAS with MOM5, we have also 
implemented the Behringer (2007) assimilation scheme to 
assimilate the along-track sea surface height observations 
from Jason 1 and Jason 2.

Traditionally, in a seasonal prediction system, the focus 
is on the initialization of the subsurface thermal structure 
in the tropics (Balmaseda 2017). Also, due to its crucial 
role in global predictability, the initialization of the subsur-
face thermal structure is key for successful seasonal pre-
dictions (McAdam et al. 2022). Hence, here we focus on 
the thermal structure from the new reanalysis based on the 
MOM5-GODAS.

This paper is organized as follows. The model configu-
ration, experiments performed, and data used are given in 
"Model, experiments, and data" section. Results are given 
in "ASSIM-TS experiment results" section. The impact of 
altimeter assimilation and improvement in GODAS-MOM5 
with respect to GODAS-MOM4p0d is given in "Improve-
ment in MOM5-GODAS with respect to MOM4p0d-
GODAS" section. Finally, "Summary and discussion" sec-
tion provides the summary and discussions.

Model, experiments, and data

Model configuration and experiments

The MOM5 model is configured globally from 80° S to 90° 
N. The model uses the tripolar grid developed by Murray 
(1996). The horizontal grid is a staggered Arakawa B grid 
with geometric height in the vertical. The ocean surface 
boundary is computed as an explicit free surface. The merid-
ional resolution is 1⁄4° between 10° S and 10° N, then gradu-
ally to 1/2° poleward of 30° S and 30° N. Zonal resolution is 
a uniform 1/2°. There are 40 layers in the vertical, with 27 
layers in the upper 400 m, with a maximum bottom depth 
of approximately 4.5 km. There is 10 m vertical resolution 
from the surface to the 240 m depth, gradually increasing to 
about 511 m in the bottom layer. Vertical mixing is achieved 
using the nonlocal K-profile parameterization of Large et al. 
(1994) with an additional tidal mixing scheme (Rahaman 
et al. 2016), and the horizontal mixing of tracers is achieved 
using the isoneutral method developed by Gent and McWil-
liams (1990) and Griffies et al. (1998). The horizontal mix-
ing of momentum uses the nonlinear scheme of Smagorin-
sky (Griffies and Hallberg 2000).

Three experiments were performed for this study. In the 
first experiment, no assimilation is performed and named 
without assimilation (hereafter CONTROL); in the second 
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experiment, all in-situ observed temperature and salin-
ity profiles were assimilated down to 750 m depth, named 
ASSIM-TS. Because of the lack of spatial coverage of salin-
ity observations during the early few years of the experimen-
tal period, particularly in the Indian Ocean, we also assimi-
lated synthetic salinity profiles constructed from temperature 
profiles and local T-S climatology like that of Huang et al. 
(2008). The third experiment is the same as ASSIM-TS, but 
altimeter-derived along-track SSH observations from Jason 
1 and Jason 2 are also assimilated. This experiment is named 
ASSIM-TSH. The observed salinity and temperature profiles 
from all in-situ platforms used in all experiments were col-
lected from the USGODAE ftp server (http://​www.​usgod​ae.​
org/​pub/​outgo​ing/​fnmoc/​data/​ocn/​profi​le). 

In all experiments, the NCEP Reanalysis 2 (R2) surface 
forcing is used (Kanamitsu et al. 2002). The momentum and 
turbulent heat fluxes are computed with the bulk algorithm 
formulation of Large and Yeager (2004) by using NCEP 
R2 near-surface atmospheric fields. SST from ocean model 
simulation was used for the flux computation. These sur-
face fluxes were further corrected by restoring the model 
temperature of the first layer (5 m) toward the daily opti-
mal interpolation (OI) OISST analysis version 2 (Reynolds 
et al. 2007) with a 10-day restoring time scale in all three 
experiments. The model surface salinity is restored toward 

the monthly mean sea surface salinity (SSS) climatology 
based on the WOD1998 (Conkright et al. 1999) with 30 
days restoring time. All these experiments were performed 
from 2003–2010, and 5-day average (pentad) data was used 
for this study. The details of the experiments performed are 
given in Table 1.

Altimeter assimilation

The standard GODAS 3D-Var follows the Derber and Rosati 
(1989) scheme to assimilate salinity and temperature. To 
assimilate sea surface height (SSH) observations, modifica-
tions are made as described by Behringer et al. (1998) and 
Ji et al. (2000). The modified 3D-Var scheme minimizes a 
function,

where the vector X represents the correction to the first-
guess prognostic tracers (temperature and salinity) com-
puted by the model, B is the background error covariance 
matrix, d0 represents the difference between the tracer obser-
vations and the first-guess, H is an interpolation operator 

I = 1∕2
{

��B−��
}

+ 1∕2{[H(�) − ��]�R−�[H(�) − ��]

+ [H(��) − ���]�R−�
���[H(��) − ���]}

Table 1   Details of experiments performed

Experiment 
name

Ocean model Resolution Forcing field Assimila-
tion method

Assimilation 
window

Assimilated data Restoration 
data

SST and SSS
Restoring time 
period

CONTROL MOM5 Zonal-
0.5° × 0.5°

Meridional 
0.5°–0.25°

NCEP-R2 3DVAR No data assimi-
lation

WOA98 SSS 
(monthly 
climatology) 
(Conkright 
et al. 1999)

Daily Reynolds 
OISST for 
SST (Reyn-
olds et al. 
2007)

30 days (SSS), 
10 days 
(SST)

ASSIM-TS MOM5 Zonal-
0.5° × 0.5°

Meridional 
0.5°–0.25°

NCEP-R2 3DVAR 10 days Temperature 
and salinity 
profiles over 
the global 
ocean 65 
⁰S–⁰65 N

WOA98 SSS 
(annual cli-
matology)

Daily Reynolds 
OISST for 
SST

30 days (SSS), 
10 days 
(SST)

ASSIM-TSH MOM5 Zonal-
0.5° × 0.5°

Meridional 
0.5°–0.25°

NCEP-R2 3DVAR 10 days Temperature 
and salinity 
profiles over 
the global 
ocean 65° 
S–65° N and 
along-track 
SSH from 
Jason-1 and 
Jason-2

WOA98 SSS 
(annual cli-
matology)

Daily Reynolds 
OISST for 
SST

30 days (SSS), 
10 days 
(SST)

http://www.usgodae.org/pub/outgoing/fnmoc/data/ocn/profile
http://www.usgodae.org/pub/outgoing/fnmoc/data/ocn/profile
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that transforms the first-guess tracers i,e model simulated 
variables from the model grid to the observation locations, 
R is the observation error covariance matrix, L is a linear 
operator that transforms a vertical column of temperature 
and salinity corrections into an estimate of the correction to 
the first guess dynamic height field, RSSH is the observation 
error covariance matrix for SSH, and δZ0 represents the dif-
ference between the observed and first-guess SSH fields. The 
observational errors are assumed to be uncorrelated, so the 
matrices R and RSSH have only diagonal elements, which are 
the error variances of the observations. The last term on the 
right-hand side is a constraint imposed by the observed SSH. 
Instead of correcting the model SSH directly, SSH observa-
tions are used to impose an integral vertical constraint on the 
corrected model temperature and salinity fields. The relative 
magnitudes of these corrections throughout the water col-
umn depend on the vertical structure of the first-guess error 
covariance matrix. In other words, the assimilation system 
preferentially corrects the model temperature and salinity 
where their expected errors are greatest, making those cor-
rections in such a way as to bring the model surface dynamic 
height into closer agreement with the SSH observations. An 
implied assumption in this approach is that we can use the 
SSH observations to correct only the baroclinic part of the 
model SSH and that it is safe to neglect the barotropic part. 
In the Tropics, our main region of interest, this may be a 
reasonable assumption (Behringer 2007).

Data used for the evaluation

The SST simulated by all three experiments has been evalu-
ated with microwave-based Advanced Microwave Scanning 
Radiometer (AMSR-E) observations (Wentz et al. 2014). 
It is to be noted that daily OISSTv2 Advanced Very High-
Resolution Radiometer (AVHRR) only SST data have been 
used for the surface restoration in the present analysis (Reyn-
olds et al. 2007) for all experiments. Reynolds et al. (2007) 
suggest that the random error in a revised version of the 
OISSTv2 analysis is as large as 0.6 °C in the humid tropics, 

upwelling zones, and marginal ice zones, declining to less 
than 0.2 °C in the dry subtropics. Hence, AMSR-E SST can 
be considered an independent dataset for evaluation. We 
have averaged the daily AMSR-E SST data into concurrent 
5-day (pentad) SST analyses. The first model level data at 
5 m depth is used as model SST for all the comparisons. 
The 0.25-degree AMSR-E data have been regridded onto 
the GODAS grid for all the comparison.

We also use the quality-controlled monthly objective 
analyses EN4 1° gridded ocean temperature and salinity data 
to evaluate the subsurface temperature and salinity simula-
tions (Good et al. 2013). In order to see how the present rea-
nalysis performed compared to other reanalysis products, we 
use the most recent Ocean ReAnalysis System 5 (ORAS5) 
reanalysis, obtained from http://​apdrc.​soest.​hawaii.​edu/​datad​
oc/​ecmwf_​oras5_​1x1.​php, which has already been remapped 
onto a 1° × 1° Mercator horizontal grid (Zuo et al. 2019). 
The ECMWF OCEAN5 system is a global ocean and sea-ice 
ensemble of reanalysis and real-time analysis. The OCEAN5 
system is a global eddy-permitting ocean-sea ice ensem-
ble (5 members) reanalysis-analysis system. It comprises 
a Behind-Real-Time (BRT) component that was used for 
the production of ORAS5 and provides an estimate of the 
historical ocean state from 1979 to the present (with a few 
days delay); and a Real-Time (RT) component, that provides 
the latest ocean conditions for NWP applications. Five (5) 
ensemble members (opa0-4; with opa0 as the control mem-
ber without perturbation), were generated using perturbed 
initial conditions (see Zuo et al. 2019) + observation and 
forcing perturbations (see Zuo et al. 2015). We also used 
independent CTD observations taken from specific field 
campaigns (Rao et al. 2011) over the Bay of Bengal for the 
evaluation of MOM4p0d-GODAS and MOM5-GODAS. All 
the data sets used for the evaluation are given in Table 2.

Metrices used for the evaluation and its importance

To evaluate the quality of the reanalysis products we used 
different metrices. These include the evaluation of SST 

Table 2   Data used for the evaluation

Data used Spatial resolution Temporal resolution Type of data References

EN4 Zonal-1° × 1°
Meridional 1° × 1°

Monthly Temperature and salinity profiles (analysis) Good et al. (2013)

ORAS5 Zonal-1° × 1°
Meridional 1° × 1°

Monthly Temperature and salinity profiles (reanalysis) Zuo et al. (2019)

OISSSTv2 Zonal-0.25° × 0.25°
Meridional 0.25° × 0.25°

Daily Sea surface temperature (analysis) Reynolds et al. (2007)

AMSR-E Zonal-0.25° × 0.25°
Meridional 0.25° × 0.25°

Daily Sea surface temperature (only satellite from 
microwave sensor)

Wentz et al. (2014)

CTD – Hourly Temperature and salinity profiles at 89° E, 18° N 
(North Bay of Bengal)

Rao et al. (2011)

http://apdrc.soest.hawaii.edu/datadoc/ecmwf_oras5_1x1.php
http://apdrc.soest.hawaii.edu/datadoc/ecmwf_oras5_1x1.php
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with independent satellite-derived AMSR-E observations. 
We show spatial bias, mean, and Root Mean Square Devia-
tion (RMSD). For the subsurface we evaluated upper ocean 
0–700 m. We used upper ocean 0–700 depth simulations for 
the evaluation of temperature and salinity since most of the 
observations before the Argo era were taken from Expend-
able BathyThermographs (XBTs) till 700 m depth began 
in the mid to late 1960s. XBTs have provided about 38% 
of the global temperature observations obtained between 
1970 and 2000 for profiles down to a depth of 300 m and a 
larger portion for profiles to 700 m depth. During the Argo 
era, ~ 15% of the global temperature profiles are still from 
XBT deployments (Goni et al. 2019). We show the 0–700 
m depth average mean spatial comparison and its bias with 
respect to widely used EN4 analysis as well as ORAS5 rea-
nalysis. We also show area average temperature and salinity 
for a few important climatic regions. These are over Nino 
3.4 (170° W–120° W; 5° N–5° S), Northwest Pacific (120° 
E–140° W; 20° N–40° N), North West Atlantic (70° W–50° 
W; 20° N–45° N) and, Indian Ocean thermocline ridge or 
dome region (50° E–70° E; 3° S–13° S). As an independent 
source, we used CTD observation to show the upper ocean 
temperature and salinity over the BoB. Thermocline depth 
is another important diagnostic that is used as a metric to 
evaluate the ocean model simulations. Here, in this study, 
we evaluated the thermocline depth as a spatial mean and 
also the time series comparison for a few important climatic 
regions defined above.

Ocean heat content (OHC) anomalies typically persist for 
several months, making this variable a vital component of 
seasonal predictability in both the ocean and the atmosphere 
(McAdam et al. 2022; Sharma et al. 2022). The thermo-
cline acts as a “memory bank” by providing long-term heat 
storage over the global ocean, including the tropical Pacific 
(Neelin et al. 1998). Marine temperature extreme events 
such as marine heatwaves (MHWs) and marine cold spells 
(MCSs) are periods of extremes (high and low, respectively) 
ocean temperatures that persist for days to months (Hobday 
et al. 2016; Schlegel et al. 2021). MHW impacts the ocean 
ecology, which includes the shifts in species, impact on the 
economy through declines in important fishery species, 
and impacts on aquaculture, which finally affects the sea-
food industries (Hobday et al. 2016). Recent observational 
studies show the frequency, intensity, duration, and spatial 
extent of MHWs have increased substantially in the global 
ocean (Frölicher et al. 2018; Oliver et al. 2018); on the other 
hand, MCSs have decreased (Schlegel et al. 2017, 2021) 
since last few decades. The MCS has become rarer and less 
severe, while MHW has become more severe, prolonged, 
and more frequent in the regional seas such as Mediterra-
nean Sea (Simon et al. 2022), Arabian Sea (Chatterjee et al. 
2022), Northeast Pacific (de Boisseson et al. 2022), Indian 
Ocean (Saranya et al. 2022), east and west coast of Australia 

(Feng et al. 2013; Oliver et al. 2018). Marine heatwaves have 
approximately doubled in frequency since the 1980s and will 
continue to increase (Arias et al. 2021), and it is strongest in 
tropical and Arctic oceans. Saranya et al. (2022) have shown 
that the western Indian Ocean region experienced the largest 
increase in MHWs at a rate of 1.2–1.5 events per decade, fol-
lowed by the north Bay of Bengal at a rate of 0.4–0.5 events 
per decade during 1982–2018. They also reported that the 
increased MHWs in the western Indian Ocean and the north 
Bay of Bengal led to a reduction in monsoon rainfall over the 
central Indian subcontinent and an enhancement of monsoon 
rainfall over southwest India due to the MHWs in the Bay 
of Bengal. Although MHW is mainly defined in terms of 
SST, a recent study shows the increase in MHW in the last 
few decades is consistent with oceanic heat content. Reli-
able heat content from reanalysis products will improve the 
understanding of the spatio-temporal variability of MHW 
and its future prediction. Hence, we also evaluated the upper 
ocean heat content.

ASSIM‑TS experiment results

Sea Surface temperature

Seasonal forecasts are sensitive to the initialization of the 
ocean component of the coupled model, particularly the SST 
(e.g., Saha et al. 2016). Hence, we focus on how the SST has 
improved in the new GODAS analysis based on MOM5. Fig-
ure 1 shows the spatial distribution of SST bias with respect 
to AMSR-E SST over the global ocean. It shows a basin-
wide warm SST bias of ~ 0.7–0.8 °C in the control run in 
which no assimilation is performed (Fig. 1a). A few locations 
in the western boundary currents, such as the Gulf Stream, 
Kuroshio current, and Agulhas current show a large positive 
bias of about 1.5 °C (Fig. 1a) in the control experiment. The 
Southern Ocean, including the Indian, Pacific, and Atlantic 
Oceans, also shows a slightly higher positive bias (~ 0.5–1 
°C) as compared to the topical region. The equatorial region 
shows an opposite trend with a slight cool SST bias in the 
CONTROL (no-assimilation) experiment. The warm biases 
in the CONTROL experiment were reduced to only ~ 0.2–0.3 
°C over most of the global ocean in the GODAS ASSIM-TS 
experiment that assimilates observed temperature and salin-
ity (Fig. 1b). However, the warm bias with reduced ampli-
tude remains over the western boundary current regions and 
eddy-rich subtropical regions of the southern hemisphere. 
The SST biases in the Gulf Stream region remain large, 
which may be associated with the misrepresentation of front 
positions and overshoot of the northward transport of the 
Gulf Stream (Zuo et al. 2019) and due to the errors in the 
NCEP-R2 forcing fields (Xue et al. 2011). This large bias 
even persists in the most recent reanalysis products ORAS 
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(Fig. 1c). The large cold bias over the Peru upwelling region 
in the control simulation drastically reduced in the ASSIM-
TS experiment. The slightly cold bias over most parts of the 
Indian Ocean remains almost unchanged in the ASSIM-TS 
experiment along with the other equatorial basin. It is inter-
esting to note that these cold bias regions also coincide with 
the warmer SST regions seen in the AMSR-E observations 
(figure not shown). The ORAS5 SST bias pattern is similar 
to the ASSIM-TS bias but with reduced magnitude (Fig. 1c). 
In order to see whether this spatial pattern of bias is station-
ary in time or it changes with the season, we also show the 
seasonal bias. The seasonal bias shows a similar pattern, 

but it shows a seasonal reversal of the bias pattern in winter 
and summer (figure not shown). In summer, the Northwest 
and south of 20° S Pacific show a large warm bias (~ 1 °C) 
in the no assimilation simulation. This pattern reverses in 
the winter. In seasonal bias, similar improvements can be 
seen in the ASSIM-TS experiment with the assimilation of 
temperature and salinity profile (figure not shown).

The amplitude of improvement in the ASSIM-TS experi-
ment can be much visible in the spatial distribution of Root 
Mean Square Deviations (RMSD) from CONTROL and 
ASSIM-TS simulations with respect to AMSR-E observa-
tions (Fig. 2). The RMSD values over most of the global 
ocean are between 0.2 and 0.4 °C except few regions, such 
as western boundary regions. The RMSD values are larger 
(~ 1–2 °C) in the Gulf Stream and Kuroshio current regions 
and also in the southern sub-tropical regions in the CON-
TROL experiment (Fig. 2a). These large RMSD values are 
reduced significantly with the assimilation of observed tem-
perature and salinity over the global ocean (Fig. 2b). The 
large RMSD values over the Southern Ocean also reduced 
significantly. The RMSD values are comparable to CFSR 
reanalysis RMSD (Xue et al. 2011). The accuracy of SST 

Fig. 1   Mean SST bias (°C) with respect to AMSR-E SST a without 
assimilation (CONTROL), b temperature and salinity assimilation in 
MOM5-GODAS (ASSIM-TS) and c ORAS5

Fig. 2   Root mean square deviation (RMSD) of SST (°C) with respect 
to AMSR-E observation a without assimilation (CONTROL), b tem-
perature and salinity assimilation in MOM5-GODAS (ASSIM-TS)
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variability is also improved in the ASSIM-TS experiment 
as compared to the CONTROL experiment. The time series 
of pentad SST RMSD averaged over the global ocean (60° 
S to 60° S) shows significant improvement in the ASSIM-
TS experiment as compared to CONTROL (Fig.  17). 
See "Impact of Altimeter Assimilation (ASSIM-TSH experi-
ment)" section for further details. In both cases, the RMSD 
values are high in wintertime (~ 0.5–0.7 °C) in the CON-
TROL experiment, but these values are reduced to 0.4–0.6 
°C in the ASSIM-TS experiment.

Subsurface temp

Since the accuracy of seasonal forecasts largely depends 
on upper ocean heat content (Balmaseda and Anderson 
2009; Balmaseda et al. 2009, 2010, 2015), we expect that 
the improved upper ocean thermal structure shown in 
this study may improve seasonal ISMR forecasts. Many 
previous studies have shown the importance of accurate 
ocean initialization for the seasonal forecast in coupled 

ocean–atmosphere general circulation model. Recently, 
Pokhrel et al. (2024) have shown the impact of improved 
ocean initialization in the CFSv2 coupled model on ISMR 
prediction. It is also reported in many previous studies that 
on a seasonal scale, upper ocean temperature and salinity 
till 700 m depth influence the seasonal to decadal fore-
cast. Hence, in this study, we have shown upper 700 m 
temperature and salinity for the evaluation of the MOM5-
GODAS reanalysis products. Figure 3 shows the 0–700 m 
mean temperature from all reanalyses and EN4 analysis. 
The observed spatial distribution pattern, as represented 
by ORAS5 and EN4, is mostly captured in the ASSIM-
TS experiment, but in the CONTROL experiment, it dif-
fers mainly over the northwest Pacific and Indian Oceans. 
The western basins of all three major oceans, the Pacific, 
Atlantic, and Indian Ocean, show higher temperatures 
than their eastern part, except over the equatorial region 
where the temperature values are similar. This struc-
ture resembles the Rossby wave structure and coincides 
with increased sea level anomalies. The mean 0–700 m 

Fig. 3   Upper ocean (0–700 m) annual mean temperature (°C) a without assimilation (CONTROL), b temperature and salinity assimilation in 
MOM5-GODAS (ASSIM-TS), c ORAS5 and d EN4 observation
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temperature shows higher values for most of the global 
ocean, particularly over the Indian Ocean and Northwest 
Pacific Ocean in CONTROL simulations compared to EN4 
analysis (Fig. 3a, d). The upper ocean (0–700 m) tempera-
ture structure in the ASSIM-TS experiment is close to the 
EN4 analysis. This also compares almost similar patterns 
to ORAS5 (Fig. 3b, c). Because the bias is not quantifiable 
in Fig. 3, we show the upper ocean (0–700 m) mean tem-
perature bias in CONTROL, ASSIM-TS, and ORAS5 with 
respect to the EN4 analysis in Fig. 4. The pervasive posi-
tive biases in the CONTROL experiment show more than 
2 °C in the north Indian Ocean, Northwest Pacific, and the 
equatorial Atlantic Ocean (Fig. 4a). These large positive 
biases reduced with T/S assimilation to only ~ ± 0.2 °C 

throughout the global ocean except few patches (Fig. 4b). 
The large negative bias (> 2 °C) in CONTROL over the 
northwest Atlantic is also reduced in the ASSIM-TS exper-
iment. ASSIM-TS simulation shows much-reduced bias 
over this region as compared to ORAS5 (Fig. 4b, c). The 
large positive bias over the Southern Ocean in the CON-
TROL experiment is also reduced in ASSIM-TS (Fig. 4a, 
b). A similar result is evident in depth versus longitude 
plots over the equatorial Indian Ocean and Pacific. The 
ASSIM-TS experiment shows a reduction in the tempera-
ture bias of more than 2 °C over the Indian and Pacific 
Oceans (figure not shown).

In order to see how the biases vary in the sub-surface in 
the areas of large positive bias, we show the average temper-
ature profiles over those areas in Fig. 5. Niño 3.4 is a highly 
studied region in the tropical Pacific Ocean. This important 
climate region’s SST is used to produce El Niño and La Niña 
indices. Figure 5a shows the upper ocean temperature bias 
over the Nino 3.4 region from CONTROL, ASSIM-TS, and 
ORAS5 with respect to EN4. The upper ocean (50–100 m) 
shows a positive bias ~ 0.5 °C, which is reversed below the 
thermocline region to a negative bias, and again, it becomes 
positive below 400 m depth in the CONTROL experiment. 
On the contrary, the ASSIM-TS experiment shows almost 
negligible bias except near the thermocline, where there is 
a slight positive bias (Fig. 5a). However, ORAS5 shows a 
large positive bias (~ 1 °C) in the thermocline region. Over 
the Northwest Pacific, the biases reach up to 1.5 °C near the 
thermocline and remain close to 1 °C throughout the water 
column in the CONTROL experiment. In the ASSIM-TS 
experiment, this large positive bias becomes almost zero 
except for a slight positive bias ~ 0.3 °C below 500 m depth 
(Fig. 5b). Similar features are also seen over Northwest 
Atlantic (Fig. 5c). In both these regions, ASSIM-TS bias 
shows less than ORAS5.

The thermocline ridge region in the southwest Indian 
Ocean is important due to its influence on the Indian Sum-
mer Monsoon and Madden‐Julian Oscillation. The pres-
ence of an upwelling region in the southwest tropical Indian 
Ocean (SWTIO) with a shallow thermocline has been named 
the Seychelles dome or thermocline ridge region. The Sey-
chelles dome or thermocline ridge (TR) has been observed 
and simulated by many previous studies and attributed to 
the negative wind stress curl and showed it to be present 
throughout the year (Xie et al. 2002; Yokoi et al. 2008, 
2009; Schott et al. 2009). Several previous studies show 
that this thermocline dome plays an important role in SST 
variability across inter-annual, seasonal, and intraseasonal 
time scales (Xie et al. 2002; Yokoi et al. 2008, 2009; Schott 
et al. 2009; Vialard et al. 2009). Studies also show ocean 
wave dynamics efficiently affect SST, allowing SST anoma-
lies to be predicted up to 1–2 years in advance (Qiao et al. 
2004, 2016; Fox-Kemper et al. 2019). Hence, we show the 

Fig. 4   Upper Ocean (0–700 m) temp bias (°C) with respect to EN4 a 
without assimilation (CONTROL), b temperature and salinity assimi-
lation in MOM5-GODAS (ASSIM-TS) and c ORAS5
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vertical temperature bias over the TR region in Fig. 5d. The 
subsurface temperature in the CONTROL experiment is 
too warm in the thermocline regions with a positive bias 

of 3 °C, which is slightly reduced to 1 °C around 600 m 
depth (Fig. 5d). However, in the ASSIM-TS experiment, the 

Fig. 5   Upper ocean temperature 
bias (°C) with respect to EN4 
observations over a Nino 3.4 
(170° W–120° W; 5° N–5° S), b 
northwest Pacific (120° E–140° 
W; 20° N–40° N), c northwest 
Atlantic (70° W–50° W; 20° 
N–45° N), d Indian Ocean ther-
mocline ridge or dome region 
(50° E–70° E; 3° S–13° S)

Fig. 6   Inter-annual monthly 
variation of upper ocean 
(0–700 m) mean temperature 
(°C) over a northwest Pacific 
(120° E–140° W; 20° N–40° N), 
and b northwest Atlantic (70° 
W–50° W; 20° N–45° N)
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biases are reduced to near zero when compared with the 
EN4 analysis.

In order to see whether the significant reduction of 
0–700 m average temperature in the ASSIM-TS experi-
ment compared to the CONTROL experiment is sporadic 
or systematic, we plotted the inter-annual monthly 0–700 
m average temperature over the Northwest Pacific and 
Atlantic in Fig. 6a, b. A prominent annual cycle with a 
maximum (minimum) peak in September (May) with a 
mean value of ~ 12.5 °C is seen in the EN4 analysis (green 
curve). The inter-annual variation of the annual cycle is 
well captured by both simulations but with a systematic 
positive bias of ~ 1 °C in the CONTROL experiment (black 
curve). This systematic bias is reduced to 0.3 °C in the 
ASSIM-TS experiment (red curve). Considering that the 

average water column is up to 700 m, this improvement 
is quite significant. The North Atlantic also shows similar 
variations but with large inter-annual variability of the 
annual cycle (Fig. 6b).

Thermocline depth

Despite improvements in model physics and numerics, 
almost all state-of-the-art ocean general circulation models 
overestimate the thermocline temperature (e.g. Rahaman 
et al. 2020). Hence, it is worth examining how the model 
simulations perform compared to an analysis product that 
is not dependent on a numerical model i,e., with EN4. 
Figure 7 shows the depth of the 20 °C isotherm (D20) 
representing the thermocline depth bias from CONTROL, 

Fig. 7   Spatial distribution of thermocline depth (m) over the global 
ocean a mean D20 from EN4 observation, D20 bias, b without 
assimilation (CONTROL), c temperature and salinity assimilation 

in MOM5-GODAS (ASSIM-TS), d ORAS5 and e D20 difference 
between CONTROL and ASSIM-TS



	 Modeling Earth Systems and Environment           (2025) 11:88    88   Page 12 of 26

ASSIM-TS, and ORAS5 with respect to the EN4 analysis. 
The observed mean thermocline is too deep to the east of 
the subtropical gyre in the Pacific and Atlantic basin and 
also in the southern Indian Ocean centered along 20° S 
(Fig. 7a). The CONTROL experiment produces a deeper 
thermocline (Fig. 7b). An improvement can be seen in 
the ASSIM-TS experiment, which shows close agree-
ment with the EN4 analysis with biases of only ~ 10 m. 
Assimilating temperature and salinity corrects the ther-
mocline by more than 60 m in the deeper thermocline 
regions over the global ocean (Fig. 7c). As explained in 
"Subsurface temp" section, over SWTIO, a unique open 
ocean upwelling exists, due to which the thermocline 
shows shallow over this region compared to other parts of 
the Indian Ocean. This region shows significant improve-
ments in the ASSIM-TS experiment as compared to the 
CONTROL experiment (Fig. 7e). The ORAS5 D20 spatial 
distribution is very close to the EN4 analysis, which the 
ASSIM-TS experiment also shows (Fig. 7a, c, d). The spa-
tial difference plots show almost identical for ASSIM-TS 
and ORAS5 (Fig. 7c, d). The difference plots between the 
CONTROL and ASSIM-TS experiments indicate a much 
deeper D20 in the CONTROL experiment over the Indian 

and Atlantic Oceans (Fig. 7e). Over the Pacific Ocean, the 
D20 in the CONTROL experiment is deeper than most 
regions except the western equatorial Pacific, where the 
ASSIM-TS experiment produces a slightly deeper D20 
than the CONTROL experiment (Fig. 7e).

In order to examine the inter-annual variability of D20, 
we show the time series of D20 over the northwest Pacific, 
northwest Atlantic, southwest Pacific, and Indian Ocean 
(thermocline dome) region in Fig. 8. Over the Northwest 
Pacific, a dominant annual cycle with deeper (shallower) 
D20 is observed during winter (summer). Although the 
CONTROL experiment captures this observed mode, it is 
systematically too deep with a mean bias of 22 m (Table 3). 
In comparison, the ASSIM-TS experiment reproduces the 
observed annual mode with a mean bias of only 1 m. The 
monthly standard deviation (STD) is also large in the CON-
TROL experiment (24 m) as compared to the EN4 analysis 
(18 m). Both the ASSIM-TS experiment and the ORAS5 
reanalysis show almost negligible bias with the least RMSD 
and STD values close to EN4 (Table 3). The inter-annual 
variability in D20 is not prominent in all simulations and is 
almost absent throughout the study period over the north-
west Pacific Ocean. The monthly D20 variation over the 

Fig. 8   Inter-annual monthly variation of D20 (m) over a northwest 
Pacific (120° E–140° W; 20° N–40° N), b northwest Atlantic (70° 
W–50° W; 20° N–45° N), c Indian Ocean thermocline ridge or dome 

region (50° E–70° E; 3° S–13° S), and d southwest Pacific (150° 
E–110° W; 10° S–30° S)
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northwest Atlantic has almost similar seasonality as that 
of the northwest Pacific, but here, inter-annual variability 
is prominent. Similar features are observed over the north-
west Atlantic Ocean as well. However, over the northwest 
Atlantic, inter-annual variability is present. Unlike the north-
west Pacific, over the northwest Atlantic, the CONTROL 
experiment shows proximity with the EN4 analysis during 
the boreal summer months. In the EN4 analysis, mean D20 
is deeper over the northwest Atlantic than the northwest 
Pacific, which was reproduced in both the ASSIM-TS exper-
iment and the ORAS5 reanalysis (Table 3). The RMSD val-
ues are only ~ 1 m in both of these regions in ASSIM-TS and 
ORAS5, while they were as high as ~ 5 m in the CONTROL 
experiment. The models are able to capture the seasonal 
variation of D20 over the Seychelles Dome with semiannual 
cycle peaks during spring and fall (Fig. 8c). However, the 
CONTROL experiment produces the observed semiannual 
signal with a constant overestimation, with a mean value 
of ~ 29 m. The ASSIM-TS experiments accurately capture 
the observed semiannual signal and the inter-annual vari-
ability. We note that this region shows large inter-annual 
variability as compared to the other two regions mentioned 
above. The STD values almost replicate the EN4 analysis in 
both the ASSIM-TS experiment and the ORAS5 reanalysis; 
also, this region shows RMSD less than 1 m (Table 3). This 
suggests that data assimilation is effective in reproducing 
the local Ekman upwelling, resulting from a combination 
of wind stress curl and the zonal wind stress (Yokoi et al. 
2009; Nagura et al. 2013). Due to this unique open ocean 
upwelling, the mean D20 is only ~ 90 m as compared to 
142 m and 117 m over the northwest Atlantic and Pacific 
Oceans. The inter-annual variability of D20 over the south-
west Pacific Ocean from CONTROL, ASSIM-TS, and the 
EN4 analysis is shown in Fig. 8d. The EN4 analysis shows 
deeper D20 (~ 200 m) during summer (Aug-Sept), and from 
November to the following year in May, it shows almost flat-
tened D20 with values of ~ 185 m. The ASSIM-TS experi-
ment and ORAS5 reanalysis almost reproduce this variation 
with the same mean values of 189 m both in simulations and 
EN4 analysis (Table 3). The CONTROL experiment repro-
duced this observed inter-annual variation, but its values 
are systematically biased deeper by ~ 18 m. The CONTROL 
and ASSIM-TS experiments also reproduce the inter-annual 
D20 over the tropical Pacific, but CONTROL shows a large 
systematic bias of ~ 50 m as compared to ASSIM-TS, which 
shows only a 20 m bias (figure not shown). The improve-
ments in D20 reconstruction will have a prominent effect on 
air-sea interaction and may lead to more accurate monsoon 
forecasts (e.g., Sharma et al. 2022).
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Upper ocean heat content

This section shows how well the OHC (surface to 300 m 
depth) from the new MOM5-GODAS reanalysis is repro-
duced compared to the EN4 analysis and ORAS5 reanalysis 
products. Estimation of OHC involves temperature and salin-
ity of the ocean; thus, it is a holistic variable that can be used 
to judge the actual improvement. Figure 9 shows the upper 
ocean heat content anomaly from CONTROL, ASSIM-TS, 
and ORAS5. The mean spatial distribution from EN4 is 
shown in Fig. 9a. Both the mean OHC pattern from the EN4 
analysis and its biases from the CONTROL, ASSIM-TS, and 
ORAS5 follow the pattern of upper ocean temperature bias 
pattern as evident from the upper ocean bias (see Fig. 4). 
The impact of temperature and salinity assimilation in the 
ASSIM-TS experiment from the MOM5-GODAS nearly 
replicates the bias exhibited by the ORAS5 reanalysis. It 
is worth mentioning that both the ASSIM-TS and ORAS5 
show relatively higher OHC bias near the coast (Fig. 9c, d). 
The reason could be due to the combination of the inability 

of the physical model to resolve the coastal process and the 
lack of observed data, which limits the data assimilation.

Subsurface salinity

The upper ocean salinity variations over the global ocean are 
the key to estimating thermohaline circulations. Often, mod-
els are unable to reproduce the upper ocean salinity varia-
tions due to complex air-sea interaction processes and errors 
in freshwater flux inputs in a forced ocean model. The upper 
ocean (0–700 m) salinity bias from CONTROL, ASSIM-TS 
experiments, and the ORAS5 reanalysis with respect to the 
EN4 analysis are shown in Fig. 10b–d. The mean spatial 
distribution from the EN4 analysis is also shown in Fig. 10a. 
The observation shows that the north Atlantic subtropical 
gyre and the Arabian Sea are the highest salinity regions in 
the global ocean due to the excess evaporation compared to 
precipitation (Fig. 10a). High salinity water is also present 
over the southwest Indian, Pacific, and Atlantic Oceans. On 
the other hand, low salinity water prevails over the North 
Pacific, Southern Ocean, and the Indonesian Archipelago 

Fig. 9   Upper ocean (0–300 m) annual mean heat content (Joule/m2) from a EN4 analysis and its bias with respect to EN4, b without assimilation 
(CONTROL), c temperature and salinity assimilation in MOM5-GODAS (ASSIM-TS) and d ORAS5
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regions, including the eastern Bay of Bengal. The CON-
TROL experiment under (over) estimates high(low) salin-
ity water as compared to observed values (Fig. 10b). The 
ASSIM-TS experiment almost reproduces the spatial pattern 
and magnitudes of the EN4 analysis. ASSIM-TS experiment 
shows biases within the range of ± 0.05 psu almost through-
out the global ocean (Fig. 10c). On the contrary, ORAS5 
shows a positive bias of ~ 0.05 to 0.15 psu, and these values 
even reach ~ 0.6 psu over the Gulf Stream region (Fig. 10d). 
In ASSIM-TS simulation, the biases over the Gulf Stream 
region are slightly negative (~ 0.1 psu) as compared to EN4 
analysis. Overall, minor differences can be seen between the 
ASSIM-TS experiment and the ORAS5 reanalysis in terms 
of the distribution pattern.

Most of the previous studies show that salinity variability 
in the tropical Pacific, particularly in the western Pacific 
warm pool (WPWP), has been viewed mainly as a passive 
response to ENSO states and accurately specifying the ini-
tial thermal state of the upper tropical ocean is essential 
for prediction. However, recent observations and modeling 
experiments suggested that ocean salinity anomaly plays an 

active role in ENSO evolutions and its forecasts (Zhu et al. 
2014; Zhi et al. 2019). In order to see how the upper ocean 
salinity performs with respect to EN4 analysis, we show the 
area average salinity difference plots over Nino 3.4 (170° 
W–120° W; 5° N–5° S), Northwest Pacific (120° E–140° 
W; 20° N–40° N), North West Atlantic (70° W–50° W; 20° 
N–45° N) and, Indian Ocean thermocline ridge or dome 
region (50° E–70° E; 3° S–13° S). 

Figure 11 shows the area averaged salinity bias in the 
upper ocean over the above-stated regions in the global 
ocean from CONTROL and ASSIM-TS experiments and 
ORAS5 with respect to the EN4 analysis. The Niño 3.4 
region has a negative bias of ~ 0.3 psu at the thermocline 
depth in the CONTROL experiment, which is reduced in 
the ASSIM-TS experiment with a negligible value of < 0.1 
psu (Fig. 11a). Deeper than the thermocline depth, the 
salinity bias is almost zero in the ASSIM-TS experi-
ments (Fig. 11a). However, ORAS5 over this important 
regions shows systematic nearly constant bias ~ 0.15 psu 
throughout the upper ocean. Hence, initializing with this 

Fig. 10   Upper ocean (0–700 m) annual mean salt (psu) from a EN4 analysis, its bias (psu) with respect to EN4, b without assimilation (CON-
TROL), c temperature and salinity assimilation in MOM5-GODAS (ASSIM-TS) and d ORAS5
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improved salinity simulation in CGCMs may improve the 
ENSO and ISMR seasonal forecast. Over the northwest 
Pacific, the CONTROL experiment has a slight salty bias 
up to the thermocline depth, which becomes fresher below 
the 400 m depth. In the ASSIM-TS experiment, the entire 
upper ocean shows almost negligible bias (Fig. 11b). In 
this important region, ASSIM-TS simulations outperform 
with near zero bias compared to ORAS5, which indicates 
a nearly constant bias of ~ 0.1 psu throughout the upper 
ocean. Figure 11c shows the salinity bias over the Gulf 
Stream region i,e over the northwest Atlantic region. This 
region also shows results similar to those of the Pacific 
region. The SWTIO has been linked to interannual vari-
ability of the ISMR (Thandlam et al. 2023), the Mad-
den–Julian Oscillation (MJO) (Zhu and Kumar 2019), and 
El Niño Southern Oscillation (ENSO) (Schott et al. 2009; 
Vialardet al. 2009). The SCTR is a region where the MJO 
is associated with strong SST variability through strong 
air-sea interaction feedback (Xie et al. 2002; Yokoi et al. 
2008, 2009; Schott et al. 2009; Vialard et al. 2009). The 
studies show the indirect effect of salinity on MJO vari-
ability via its role in upper ocean stratification variability 
(e.g., the barrier layer), which further modulates intrasea-
sonal SST (Drushka et al. 2012; Guan et al. 2014). Hence, 
any improvements in upper ocean salinity will directly 

impact the better prediction of ISMR and MJO. The upper 
ocean salinity over the TR region almost reproduced the 
EN4 analysis with near-zero bias throughout the upper 
ocean (Fig. 11d). Like the Pacific and Atlantic Oceans over 
the Indian Ocean too, ORAS5 shows a positive salinity 
bias ~ 0.1–0.2 psu. However, biases are slightly higher in 
the CONTROL experiment over these regions than in the 
Niño 3.4 region and northwest Pacific.

Impact of Altimeter Assimilation (ASSIM‑TSH 
experiment)

It has been reported in many previous studies that assimilat-
ing SSH observations improves ocean analyses (e.g., Bal-
maseda and Anderson 2009). Here, we also implement a 
data assimilation scheme to assimilate along-track altimeter-
derived sea surface height (SSH) along with temperature and 
salinity profiles. The details are given in "Altimeter assimi-
lation" section. In this section, we show the impact of SSH 
assimilation in MOM5-GODAS.

Figure 12 shows the spatial difference of RMSD com-
puted with respect to AMSR-E SST between ASSIM-TS 
and ASSIM-TSH over the global ocean. The positive values 
represent the improvement in SST, and the negative values 
represent degradation with the SSH assimilation. It can be 
seen that, except for a few small patches, it shows positive 

Fig. 11   Upper ocean salt bias 
(psu) with respect to EN4 
analysis over a Nino 3.4 (170° 
W–120° W; 5° N–5° S), b 
northwest Pacific (120° E–140° 
W; 20° N–40° N), c northwest 
Atlantic (70° W–50° W; 20° 
N–45° N) and d Indian Ocean 
thermocline ridge or dome 
region (50° E–70° E; 3° S–13° 
S)
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values throughout the global ocean. Significant improve-
ments over the western boundary current regions such as 
Gulf Stream and Kuroshio Current and over the Northwest 
Atlantic and Pacific Ocean. The maximum improvement 
over this region is ~ 0.5 °C. The actual RMSD values over 
these regions in the ASSIM-TS experiment also show large 
values of ~ 2 °C. This can be seen in zoom Fig. 13 over the 
northwest Atlantic. Significant improvements in SST RMSD 
can be seen along the Gulf Stream path. These improve-
ments can be seen in the subsurface temperature as well 
over the Gulf Stream region, as shown in Fig. 14. The other 

regions where the RMSD values are also large are over the 
southwestern Atlantic region, which is characterized by the 
poleward flowing Brazil Current (BC) and the equatorward 
flowing Malvinas Current (MC) and its confluence zone 
off the coast of Argentina (Combes and Matano 2014) and 
Southern Ocean also improved (Fig. 15). The improvements 
in the subsurface temperature off the coast of Argentina in 
ASSIM-TSH simulations as compared to ASSIM-TS simu-
lations with respect to EN4 analysis can be seen in Fig. 16. 
Significant improvements are also seen over these regions 
with the SSH assimilation. These improvements are ~ 20% 
to 25% over the large RMSD value regions. The large SST 
bias and RMSD errors at the western boundaries, especially 
along the Gulf Stream and Kuroshio region, may be related 
to the misrepresentation of the path of western boundary 
currents by the model itself (Balmaseda et al. 2015). The 
previous studies also show that the SST simulation errors 
over the western boundary current regions are also due to 
atmospheric forcing errors (Xue et al. 2011).

Figure 17 shows the time series of SST RMSD over the 
global ocean from ASSIM-TS and ASSIM-TSH experiments 
with respect to AMSR-E observations. It is worth mention-
ing that AMSR-E is an independent observation dataset used 
for SST evaluation. The impact of SSH assimilation can be 
seen in the reduced RMSD in the ASSIM-TSH experiment 
compared to the ASSIM-TS experiment. The reduction of 
RMSD over the global ocean indicates the value added by 
the assimilation of temperature and salinity, which is further 
corrected by SSH assimilation in reanalysis products.

The method of Behringer (2007) that we use in assimilat-
ing SSH in the GODAS 3Dvar assimilation scheme requires 
a reference mean climatology of the model correspond-
ing to the mean climatology of the altimeter data used to 

Fig. 12   SST RMSD difference (°C) between ASSIM-TS and ASSIM-
TSH experiment over the global ocean

Fig. 13   Spatial distribution of 
SST RMSD from a ASSIM-TS 
and b ASSIM-TSH experiment 
over North West Atlantic Ocean
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construct the SSH dataset. Computing the model climatol-
ogy requires a long run of the MOM5-GODAS, assimilating 
the same in situ data. As this would require considerably 

greater computing resources, we could not produce such a 
long reference simulation. Hence, we use the climatology 
of 2003–2010 for SSH and use this climatology as refer-
ence. However, the altimeter data used for the ASSIM-TSH 
experiment used the 1993–1999 mean as SSH climatology. 
Due to the different reference periods used for the SSH com-
putation for observation and model, the impact of altimeter 
assimilation may not show drastic improvement (as reflected 
in Fig. 12). In this study, we are simply reporting that in 
the MOM5-GODAS, we also assimilate SSH data derived 
from altimeters, and it shows improvement. In future studies, 
we will use the same reference period for computing SSH 
climatology for observation and model for a longer period 
of reanalysis.

Improvement in MOM5‑GODAS with respect 
to MOM4p0d‑GODAS

In previous studies, Rahaman et al. (2016, 2018) showed 
improvements in MOM4p1-GODAS as compared to 
MOMp0d-GODAS. In this section, we briefly show the 
improvement in subsurface temperature in the MOM5-
GODAS as compared to the MOM4p0d-GODAS. Figure 18 
shows the upper ocean (0–700 m) mean temperature bias 
with respect to the EN4 analysis over the global ocean from 
the MOM5-GODAS and MOM4p0d-GODAS reanalyses. 
This bias is computed from the 2006–2010 mean. Please 
note that both of these reanalyses are identical in terms of 
forcing and data assimilation method (3D-Var and same tem-
perature and salinity profiles) except for the change in the 
numerical forecast model (MOM4p0d vs MOM5). Over-
all, the temperature bias was reduced by 0.1 °C using the 
MOM5-GODAS over most of the global ocean as compared 
to the MOM4p0d-GODAS. Improvement in the Gulf Stream 

Fig. 14   Upper ocean tempera-
ture difference plots averaged 
over the Gulf Stream region 
with respect to EN4 analysis 
from TA and ASSIM-TSH 
experiments a Winter (DJF), b 
Spring (MAM), and c annual

Fig. 15   Spatial distribution of SST RMSD from a ASSIM-TS and 
b ASSIM-TSH experiment over the Southern Ocean (south Atlantic 
sector)
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region in MOM5-GODAS can also be seen as compared to 
MOM4p0d-GODAS. However, the biases near the coasts 
still persist and are also slightly enhanced over the Southern 
Ocean near southern Australia. The interannual variability 
of ISMR is linked to climate modes such as ENSO, Indian 
Ocean Dipole (IOD), Atlantic Multidecadal Oscillation 
(AMO), Atlantic Zonal Mode (AZM), Pacific Decadal Oscil-
lation (PDO) (Hrudaya et al. 2020). The oscillations thought 
to have the most significant impact on ISMR are ENSO and 
IOD (Krishnaswami et al. 2015). The IOD has an impact on 

ISMR, and it also influences the ENSO-ISMR relationship 
(Ashok et al. 2001; Cherchi et al. 2021). The positive and 
negative phases of the IOD exhibit asymmetric rainfall vari-
ability over India (Behera and Ratnam 2018). Specifically, a 
positive IOD leads to enhanced ISMR (Ratna et al. 2021).To 
see how the MOM4p1-GODAS and MOM5-GODAS rea-
nalysis products compare with EN4 over the IOD and ENSO 
region, we show the depth vs longitude bias of upper ocean 
temperature over the Indian Ocean and Pacific Ocean along 
the equator. The improvement in the equatorial Indian Ocean 

Fig. 16   Temperature difference 
plots off the coast of Argentina 
with respect to EN4 analysis 
from TA and ASSIM-TSH 
experiments a Winter (JJA), b 
Spring (SON), and c annual

Fig. 17   Inter-annual variation of 
5-day SST RMSD (°C) over the 
global ocean (60° S–60° N)
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in MOM5-GODAS as compared to MOM4p0d-GODAS 
can be seen in Fig. 19. Biases in the western and eastern 
equatorial Indian Ocean reduced considerably in MOM5-
GODAS as compared to operational MOM4p0d-GODAS 
with respect to EN4 analysis. Similar improvements over 
the Pacific Ocean can be found in Fig. 20.

One of the challenges in evaluating operational ocean 
reanalysis is that nearly all high-quality observed tempera-
ture and salinity profile data have already been assimilated, 

making it difficult to validate such reanalysis with independ-
ent data. Sometimes, experimental field data can be used to 
validate such ocean analyses. In our study, we used CTD 
observations over BoB from July to August 2009 (Rao et al. 
2011). Figure 21 shows the mean temperature and salinity 
comparisons of the new and old GODAS reanalysis dur-
ing July 2009. Significant improvements in temperature and 
salinity can be seen in the MOM5-GODAS as compared to 
the MOM4p0d-GODAS. These improvements can be attrib-
uted to the model upgrade since the atmospheric forcing and 
assimilation schemes are the same.

Summary and discussion

In the last few decades, ocean reanalysis products have been 
improved significantly due to the improved physical ocean 
general circulation models and the introduction of sophis-
ticated assimilation schemes such as the Local Ensemble 
Transform Kalman Filter (LETKF) and the Hybrid-Gain 
method (Penny 2014; Penny et al. 2015). However, even 
today, reanalysis products have drawbacks in accurately 
representing the upper ocean circulation and temperature 
and salinity structures. The Global Ocean Data Assimilation 
System (GODAS) is the operational ocean data assimila-
tion system used at NCEP with MOM3 and MOM4 (within 
the CFS) as the physical OGCM and 3D-Var assimilation 
scheme (Behringer and Xue 2004; Behringer 2007). The 
same GODAS system is also operational at INCOIS with 
MOM4p0d (Ravichandran et  al. 2013). Rahaman et  al. 
(2016, 2018), later upgraded the GODAS with MOM4p1 
and showed improvements in SST, surface and subsurface 
currents, upper ocean temperature, and salinity structure 
over the Indian Ocean. By initializing with this new rea-
nalysis product, the CFSv2 shows improved ISMR predic-
tion skill (Pokhrel et al. 2024). Going further in this study, 

Fig. 18   Upper ocean (0–700 m) temperature bias (°C) with respect to 
EN4 analysis a temperature and salinity assimilation in MOM4p0d-
GODAS, b temperature and salinity assimilation in MOM5-GODAS 
(ASSIM-TS)

Fig. 19   Depth vs longitude 
temperature bias (°C) averaged 
over (2° S-2° N) over the Indian 
Ocean a temperature and salin-
ity assimilation in MOM4p0d-
GODAS, b temperature and 
salinity assimilation in MOM5-
GODAS (ASSIM-TS)
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we upgraded the numerical forecast model of the GODAS 
to MOM5 and implemented the assimilation of altimeter-
derived along-track sea surface height (SSH). We assimi-
lated temperature and salinity profile data from all in-situ 
observing platforms (Argo, Buoy, XBT, etc.) over the 
global ocean. We performed three experiments: 1. A free 
run without any data assimilation, named ‘without assimi-
lation’ (CONTROL), which was used as a control experi-
ment to assess the quality of GODAS; 2. Assimilation of 
observed temperature and salinity data named ASSIM-TS, 
and 3. Same as the ASSIM-TS experiment but with addi-
tional altimeter along-track SSH data assimilated in GODAS 
(ASSIM-TSH).

Previous assessments of SST simulation have shown large 
biases over the northwest Pacific (Taylor et al. 2012; Wang 
et al. 2014, 2018; Feng et al. 2021), Atlantic Ocean (Taylor 
et al. 2012; Deppenmeier et al. 2020) and Southern Ocean 
(Hyder et al. 2018; Wills et al. 2022) in both forced and 
coupled model simulations. In this study, too, SST bias is 
larger (~ 1–2 °C) over these regions in simulations without 
data assimilation (CONTROL). However, in the ASSIM-TS 

experiment, the biases were reduced drastically and only 
remained at ~ 0.5 °C, similar to the ORAS5 reanalysis. The 
SST RMSD values are also large over the regions of large 
bias in the CONTROL simulation, which was again reduced 
considerably in the ASSIM-TS experiment. Further assimi-
lation of altimeter derived SSH observations reduced the 
RMSD over these large RMSD regions. The SSH assimila-
tion preferentially corrects the model temperature and salin-
ity where their expected errors are most significant, making 
those corrections in such a way as to bring the model surface 
dynamic height into closer agreement with the SSH obser-
vations. Hence, we can expect maximum impact wherever 
there is a lack of temperature and salinity profiles in the 
assimilation cycle. Since in the open ocean, the distribu-
tion of T/S profiles is reasonably good, we can expect the 
least impact, whereas near the coastal regions and eddy-rich 
southern ocean where in-situ temperate and salinity obser-
vations are sparse but SSH is available, impacts are more. 
This is visible with the reduction of SST RMSD over these 
regions. Producing accurate upper ocean temperature and 
salinity is crucial for initializing coupled ocean-atmospheric 

Fig. 20   Depth versus longitude 
temperature bias (°C) aver-
aged over (2° S–2° N) over the 
Pacific Ocean a temperature 
and salinity assimilation in 
MOM4p0d-GODAS, b temper-
ature and salinity assimilation in 
MOM5-GODAS (ASSIM-TS)

Fig. 21   a Salinity (psu), b 
temperature (°C) comparison 
from MOM5-GODAS and 
MOM4p0d-GODAS with CTD 
observation over the north Bay 
of Bengal during 2009 monsoon 
(22 July–6 August)
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models for seasonal prediction. Xue et al. (2011) showed 
that a large spread of reanalysis products from state-of-
the-art operational centers is used for the initialization of 
AOGCMs (Atmosphere–Ocean General Circulation Mod-
els), indicating that improving the accuracy and precision of 
upper ocean temperature and salinity is important for opera-
tion prediction. We found that across the experimental con-
figurations that we tested, the most realistic representation 
of the upper 700 m average temperature was achieved with 
the MOM5 model when assimilating temperature and salin-
ity observations using the 3D-Var data assimilation tech-
nique. The global distribution pattern of 0–700 m average 
temperature almost replicates the widely used gridded EN4 
analysis. On the contrary, the free simulations that do not 
use any assimilation show a large positive bias (~ 2 °C) over 
the northwest Pacific, tropical Atlantic, and the entire Indian 
Ocean. The distribution patterns of the ASSIM-TS experi-
ment resemble the ORAS5 reanalysis product, which is con-
sidered to be a leading ocean reanalysis product (Balmaseda 
et al. 2015; Zuo et al. 2015, 2019; Karmakar et al. 2018). 
The ORAS5 reanalysis also uses the 3D-Var data assimila-
tion technique to assimilate SST, SSH, and subsurface tem-
perature and salinity with a 5-day assimilation cycle (Zuo 
et al. 2019). The thermocline ridge region over the south-
west Indian Ocean is unique due to the presence of open 
ocean upwelling (Xie et al. 2002; Schott et al. 2009; Vialard 
et al. 2009). This region is the most important for the Indian 
Summer Monsoon rainfall variability. Many studies show 
a direct link between ISMR with the SST and upper ocean 
heat content over this region (Annamalai and Murtugudde 
2004; Annamalai et al. 2005; Venugopal et al. 2018). The 
state-of-the-art OGCMs and IPCC models are unable to sim-
ulate the vertical structure of temperature over this region 
(Rahaman et al. 2020). This is mainly due to the lack of 
realistic model parameterization schemes, which are mostly 
independent of model resolution (Rahaman et al. 2020). The 
present study also shows the thermocline mean temperature 
is too warm by ~ 3 °C over this region with no data assimila-
tion. However, with data assimilation, the warm bias almost 
becomes zero when compared with the EN4 analysis. The 
inter-annual variability also shows a similar result. The 
upper ocean mean salinity representation in the ASSIM-TS 
experiment almost replicates the EN4 observed distribution 
and also simulations from ORAS5 (a recent study shows 
ORAS5 is the best product among all reanalysis—Karmakar 
et al. 2018). We also implemented an assimilation scheme to 
assimilate along-track altimeter-derived SSH observations. 
It further shows improvement in the SST and thermocline 
temperature. This improved upper ocean temperature and 
salinity structure will provide a more realistic initialization 
of the CFSv2 coupled model, which is used for the seasonal 
prediction of ISMR (Saha et al. 2019; Pokhrel et al. 2022).
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