BASIC CONCEPTS OF DATA ASSIMILATION

Improved
Model Results

ARYA

Training Course on Modelling for Ocean Forecasting and Process PAUL
Studies during 6 — 10 December 2021 INCOIS




OUTLINE

- Why do we need data assimilation ?
 What is data assimilation ?
* How does it improve the estimate ?

* Practical Applications ( if time permits).




Why do we need Data Assimilation ?
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Flowchart of Data Assimilation
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What is Data Assimilation ?

DATA ASSIMILATION

Finding maximum likelihood Minimize the cost function
(using Bayes’ Theorem) ( Least square approach )

WHAT IS BAYES’ THEOREM ?




What is Probability ?

How likely an event is likely to occur !!!

Bayes’ Theorem

p(B| 4)p(4)
p(B)

p(4|B)=

P(A]
P(B]
P(A)
P(B)

B) = Probability of finding A given B
A) = Probability of finding B given A
= Probability of A with no knowledge of B
Probability of B with no knowledge of A.

A
B




Did you ever bet on horses ?

Total Number of Races

Fleetfloot winning 7
Bolt winning 5

Probability of Bolt winning =5/12 =41.7%
Probability of Fleetfoot winning =7/12 = 58.3%

Now let's add a new factor into the calculation. It turns out that on 3 of Bolt's
previous 5 wins, it had rained heavily before the race. However, it had rained only once
on any of the days that he lost. It appears, therefore, that Bolt is a horse who likes

'soft going', as the bookies say. On the day of the race in question, it is raining.

Given this new information ( raining ), what is the probability of Bolt winning ?

Ref : http://www.kevinboone.net/bayes.html




s raining | Not raining

Bolt winning 3 2
Bolt losing 1 6

What we need to know is the probability of Bolt winning, given that it is raining ?

Like any other probability, we calculate it by dividing the number of times something
happened, by the number of times if could have happened.

We know that Bolt won on 3 occasions on which it rained, and there were 4

rainy days in total.

So Bolt's probability of winning, given that it is now raining, is 3 / 4, or 0.75, or 75%.

The probability shifts from 41.7% to 75%.

This is important information if you plan to bet — if it is raining you should
back Bolt; if it is not, you should back Fleetfoot.




Revisiting Bayes’ Theorem

P(A|B) = Probability of finding A given B
p(A|B) =p(B|A) p(A) / p(B) P(B|A) = Probability of finding B given A

P(A) = Probability of A with no knowledge of B

P(B) = Probability of B with no knowledge of A.

P(A|B) = Probability of Bolt winning when it rains
P(B|A) = Probability of raining when Bolt wins = 3/5
P(A) = Probability of Bolt winning = 5/12

P(B) = Probability of raining = 4/12

3 5 4 3
A|B)=| =xX— |+—=—
(| B) (5 12) 12 4




Data Assimilation

Background Projection .
state vector Operator Observation

|

x“ =x"+BH"(HBH" + R) ' (y— Hx")

|

Analysis Model Error Observation
state Covariance Error
vector Covariance




What is a state vector ?

A state variable is one of the set of variables that are used to
describe the mathematical "state" of a dynamical system.

A state vector is composed of all such state variables.
Example :-

In physical oceanography, a state vector is composed of temperature,
salinity, horizontal velocities and sea surface height.

When you know the state vector at every location, you know the state
of the ocean.



https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Dynamical_system
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In numerical ocean modeling, a ¥4 degree global model has a
state vector whose length is

L = (90*4) X (360*4) X (No. of vertical Layers) X 5 = 108

Huge Beast




POPULAR DATA ASSIMILATION METHODS

* KALMAN FILTER

* 3D VAR

*4D VAR

* ENSEMBLE BASED METHODS

e NONLINEAR FILTERS




What is the relative significance of B& R ?




x* =3 + BHT(HBH™ + R '(y—Hx)

Let’s estimate the temperature of Hyderabad.

x"=31.0,0; =2

Given 5
v, =30.0,0;5 =1

Inthiscase, H=1,R=0_,B=o0,

2
o b 0
=x' =X+
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If o, >0,
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X =

If o,>>0,
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x*=3033,062=0.8
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PRACTICAL ISSUES
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What is the role of B ??

B propagates information from one site to another !!!




x* =3 + BHT(HBH™ + R '(y—Hx)

Suppose we observe a point in between two grid points.

H =ax! +(1—a)x; 0<a<l

Assume

B:|:Z“ b12:|—|:01922 ‘uazbzi|9 R:G(?
21 D HG, O,

S

U U (om0 oot +1-a)x!]
= +0, r 1
X5 x5 po+(1-o) [a2-|—2a(l—oc),u+(l—oc)2Jc7b2+G§




Case 1: No cross-correlation between two grid points, u=0 and ¢ =1

[xf] [xf] z(awa—a)j Yo — oot + (1- et
= +0o, r 1
X5 x5 po+(1-a) [a2+2a(1—a),u+(l—oc)2ja,f+002

2 2

a cTO b Gb

X =" X T3 2 Yo
GO+Gb GO+ b

a __ b

Xy =Xy

The analysis at grid point 1 is same as the analysis of the previous example
The analysis at grid point 2 is equal to the background. Observation had no effect.




Case2:a =1, u=0

[xf’] [xf) z(awa—a)j o = loee! + (1= a)x!
= +o, r 1
X5 x5 po+(1-a) [a2+2a(1—a),u+(l—oc)2jo,f+c702

2 2
a 60 b Gb
X =% 2N T 2N
Vo= X,
a b 2 0 1
Xy =X, + uo, ——L
Go+0;

Now the solution at grid point 2 is influenced by the observation. The role of
Background error covariance is to spread information from one grid point to the
other.

ARE THERE DRAWBACKS OF PROPAGATING INFORMATION ?




Idea of Localization
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Localization

Observation based Localization
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» Data Assimilation is done in a local volume, choosing observations
*The state estimate is updated at the central grid red dot
*All observations (purple diamonds) within the local region are assimilated
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TAKE HOME MESSAGE

* The truth is not known.
* Neither observation nor model is devoid of errors.
* Assimilate these two to get a best estimate.

* The model error covariance propagates information from
one place to another.

e Covariance inflation is necessary for Ensemble based schemes.

* Localize observations to get rid of spurious correlations.




PRACTICAL APPLICATIONS IN INCOIS




‘ OBSERVATIONS

Assimilated Variables Independent Variables
1. In-situ Temperature — T tealovel anom aly
ﬁ . St?}illi ty Profiles (RAMAmoorings, NIOT buoys and Argo 2. Sea Surface salini t}."
3.Sea surface temperature (Satellite track data : AMRSE) 3. 1LV Currents

Validations and Comparisons were made with respect to both assimilated ]
(dependent) variables and Independent variables
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ARGO FLOATS
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. Daily pop-up of Argo floats in the Northern Indian Ocean




Temperature and Salinity Data availability

L 1 = 1 T

b NIOT 18.52N67.49E

Location

ADCP Data availability
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Assimilated Observations
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TAKE HOME MESSAGE

* The truth is not known.
* Neither observation nor model is devoid of errors.
* Assimilate these two to get a best estimate.

* The model error covariance propagates information from
one place to another.

e Covariance inflation is necessary for Ensemble based schemes.

* Localize observations to get rid of spurious correlations.







