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Abundance of data
• Thanks to the advances in technology of

• Sensors
• Wireless Communication
• Mass storage devices
• Large super computers

• Shift from data sparse to data rich regime – amount of data doubles in every few years.
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Data organization
• Time Series : Number of daily new covid infection in a city.

• Spatial: Number of infected in every country on a given time.

• Spatial-temporal: Monthly rain fall in each of 50 states in the US.

• Data Matrix: X: [x1 , x2 , x3… xn] , xi∈ Rd, - Represents n points in d- dimensional space.
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“Big” in Bigdata
• In the matrix form x∈ Rd x n : Two variables.

• n - is the number of data (columns).

• d - is the dimension of the space (rows)

• In general: either n or d or both can be large.

• Similar measures apply for other data organization.
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Classical Statistics

• In classical mathematical statistics there are a number of asymptotic results obtained by
fixing d and letting the number of samples to increase without bound such that the ratio

𝑑𝑑
𝑛𝑛

-> 0

• This asymptotic theory provides the basis for estimation theory.
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Examples 1
• Law of Large Numbers (LLN): If xi , 1 ≤ i ≤ n is i.i.d sequence of random variables from, say

normal distribution N (m, σ2) with unknown m.

• �̅�𝑥(n) = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 is an unbiased estimate.

• LLN: prob [| �̅�𝑥(n) - m| > ԑ] -> 0 or n -> ∞ ---------> 1

• This is called asymptotic consistency.

• Also known as measure concentration.
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Examples 2
• Central Limit Theorem (CLT):

• In addition to (1), the following stronger result hold:
𝑛𝑛 (�̅�𝑥(n) – m)

σ
--------------> N(0,1) -----------------> (2)

in distribution

• That is, centered and scaled estimate converges in distribution to a standard normal Gaussian
variable.
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High dimensional data
• Consider a set of n = 100 color images of a human retina with 256 x 256 = 65, 536 pixels in each of

the three frames representing Red, Blue and Green with a total of d = 65, 536 x 3 = 196, 608
pixels.

• Here x∈ Rd x n where d >> n

• In here, 𝑑𝑑
𝑛𝑛

= α > 0 -------------------------------> (3)
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Implications of 𝑑𝑑
𝑛𝑛

= α > 0 

• Many of the known results from classical statistics when applied to this case , 𝑑𝑑
𝑛𝑛

= α > 0 give only 
“suboptimal” guarantees.

• To address this challenge a new specialty is emerging.

• M.J. Wainwright (2019) High-Dimensional Statistics: A non- asymptotic viewpoint, Cambridge 
university Press.

• R.Vershynin (2020) High-Dimensional Probability: An Introduction with Application in Data Science 
Cambridge University Press.
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Curse of dimensionality
• Coined by Richard Bellman (1920 – 1984) when developing.

• R.Bellman (1952) “Theory of Dynamic Programming”, Proc of NAS, pp 716-719.

• Finding optimal solution for multistage decision process often require 2d computation.

• The popular Reinforcement Learning (RL) is based on the theory of Markov Decision Process is an
example of the application of DP.
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Counter intuitive results in High dimension
• Empty space – High dimensional geometry.

• Concentration of distances, measures, functions.

• Statistical two class classification.

• Estimation of covariance matrices.
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Hyper cube Vc (d,a) in Rd

• Vc (d,a) – hypercube of side “a” in Rd .

• Diagonal AB in Vc (2,1):

AB = 2 * OA = 2 1
2

2
+ 1

2

2 1/2
= 2

• Diagonal AB in Vc (d,1):

AB = 2 * OA = 2 ∑𝑖𝑖=1𝑑𝑑 1
2

2 1/2
= 𝑑𝑑 ---------------------------> (4)

• Diagonal increases as 𝑑𝑑 while the side of the cube remains constraint as d increases.

A

B

O 1
2

1
2

V (2,1)
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Empty space in Rd

• Volume of Vc (d,a) = ad .

• If we double the side : Vc (d, 2a) = 2d Vc (d, a) ---------------------------> (5)

• Volume of the cube grows exponentially when you double its side.

• Creates a lot of empty space.
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Spheres in Rd : Vs (d,r)
• Vs (d,r) – a sphere of radius r in Rd .

• Vol [Vs (d,r)] = П𝑑𝑑/2

Ґ(𝑑𝑑2+1)
rd --------------------------------------> (6)

• For integer k: Ґ(𝑘𝑘 + 1) = k Ґ(𝑘𝑘) and Ґ(𝑘𝑘 + 1) = k! ----------> (7)

Ґ(1/2) = ∏
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Unit Sphere : Vs (d,1)
• Vol [Vs (d,1) ] = П𝑑𝑑/2

Ґ(𝑑𝑑2+1)
->0 as d-> ∞

• Vol [Vs (3,1) ] = 4
3
П = 4.1867

Vol [Vs (10,1) ] =П
10

10!
= 0.0258

• Question : For what values of 𝑟𝑟, Vol [Vs (d,r) ] =1

• Using Strilings approximation to n! :

n! = 2П𝑛𝑛 𝑛𝑛
𝑒𝑒

𝑛𝑛

• Verify r= O( 𝑑𝑑) for Vol [Vs (d,r) ] =1

• Empty space syndrome.

15



Cube inside a cube
• Consider a unit cube inside a concentric unit sphere in Rd .

• Have seen AB = 𝑑𝑑

• For d < 4, AB < 2  and inside the sphere.
d = 4, AB =2 and AB is a diameter.

d > 4, AB > 2 and punches through the sphere.

• For large d, 2d diagonals get out of the sphere.   

• It looks like the picture of the COVID virus.

o

A

o

B

Vc (d,1) ⊆ Vs (d,1)
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Sphere in a Sphere
• Let r < R, concentric spheres of radii r and R.

• Vs d,𝑅𝑅 −Vs d,r
Vs d,R

= 1- Vs d,r
Vs d,R

----------------------------------------> (8)

= 1 - 𝑟𝑟
𝑅𝑅

𝑑𝑑
-> 1 as d increases.

(i.e.) Volume of the sphere reside near the empty space shell.
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Sphere in a cube
• Ratio α = Vs d,r

Vc d,2𝑟𝑟

= П
𝑑𝑑/2rd

Ґ(𝑑𝑑2+1)

1
2𝑟𝑟 𝑑𝑑 = П

4

𝑑𝑑/2 1

Ґ(𝑑𝑑2+1)
-> 0 

as d increases ----------------------> (9)

• Fraction of the volume of the cube trapped inside the 
sphere goes to zero as d increases.

• Empty space at the center and volume of the cube is 
concentrated at its 2𝑑𝑑 corners.

r

2r
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Pairwise distances in 𝑅𝑅2
• Consider Vc 2,1 : Generate 1001 independent, identically 

distributed in Vc 2,1 .

• Fix one of the point and call it x = (x1, x2)𝑇𝑇.

• Compute for each of the rest of 1000 points 

𝐷𝐷2(x, y) = [(𝑥𝑥1− 𝑦𝑦1)2 + (𝑥𝑥2− 𝑦𝑦2)2 ] (y ≠ x).

• Clearly 0 ≤ 𝐷𝐷2(x, y) ≤ 2 for all y ≠ x since |𝑥𝑥1− 𝑦𝑦1| ≤ 1 and 
|𝑥𝑥2− 𝑦𝑦2| ≤ 1 .

• Histogram of 𝐷𝐷2(x, y)  is fully supported on [0,2].

x y

Vc 2,1
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Pairwise distances in 𝑅𝑅2: d =100
• Repeat the above experiment in Vc d, 1 .

• Here �𝑥𝑥 = (x1, x2, … xd)𝑇𝑇

𝑦𝑦 = (y1, y2, … yd)𝑇𝑇
with |𝑥𝑥𝑖𝑖− 𝑦𝑦𝑖𝑖| ≤ 1 

• 𝐷𝐷2(x, y) = ∑𝑖𝑖=1𝑑𝑑 (𝑥𝑥𝑖𝑖− 𝑦𝑦𝑖𝑖)2 ---------------------> (10)

• Clearly 0 ≤ 𝐷𝐷2(x, y) ≤ 100 .

• A lot more is true – thanks to the law of large numbers.

x y

Vc d, 1
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Concentration of distances
• Clearly 𝑥𝑥𝑖𝑖’s and 𝑦𝑦𝑖𝑖’s , (𝑥𝑥𝑖𝑖− 𝑦𝑦𝑖𝑖)2 are i.i.d random variables with finite mean and variance.

• 𝐷𝐷2(x, y) = ∑𝑖𝑖=1𝑑𝑑 (𝑥𝑥𝑖𝑖− 𝑦𝑦𝑖𝑖)2 is the sum of i.i.d random variables.

• By the law of large numbers, the distribution of 𝐷𝐷2(x, y)  is concentrated in the interval [0,100] 
around the mean.

• For small d, this distribution is spread out in [0,d] but for large d, it gets concentrated.
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Gaussian distribution in Rd

• x∈ Rd , m∈ Rd ∑ Rd x 𝑑𝑑.

• X ~ N (m, ∑) =  1

2П 𝑑𝑑/2 ∑ 1/2 exp [- 1
2

(x −𝑚𝑚)𝑇𝑇 ∑−1 (x - m)] -----------------------------> (11)

• X ~ N (0, σ2𝐼𝐼) = ∏𝑖𝑖=1
𝑛𝑛 1

2Пσ
exp [− 𝑥𝑥𝑖𝑖

2

2σ2
] -----------------------------------------------> (12)

• E [ x 2 ] = d E(x12) = d σ2 ---------------------------------------------> (13)
Since 𝑥𝑥𝑖𝑖 are i.i.d N (0, σ2).

• For large d, the random variable x 2 is concentrated about its mean d σ2.

• σ 𝑑𝑑 is called the radius of the Gaussian.
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Tail probability of N(0,1) in 𝑅𝑅1

• Consider N(0,1)

• Let r(a) = 1
2П ∫−𝑎𝑎

𝑎𝑎 exp 𝑥𝑥2

2
𝑑𝑑𝑥𝑥 = Area under N(0,1) between –a and a.

a r(a) Tail : 1 – r(a)

1 0.683 0.317

2 0.955 0.045

3 0.997 0.003
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Tail probability of N(0,I) in 𝑅𝑅𝑑𝑑
• Probability that lies outside a sphere of radius 1.

• N(0, I) still attains its maximum at x =0.

• For large d, tail has more information.

• Probability of N(0,I) contained in a thin annulus around x 2 = 𝑑𝑑

P[ 𝑑𝑑 - β ≤ x 2 ≤ 𝑑𝑑 + β] ≥ 1-3 𝑒𝑒−∝β2 , where β < 𝑑𝑑 and α > 0 is a constant.

d 1 2 5 10 20 100

P 0.317 0.1353 0.5494 0.9473 0.999 1.0

24



Chi- square distribution of x 2

• Let x∈ Rk , 𝑥𝑥𝑖𝑖 ~ i.i.d. N(0,1) for 1≤ i ≤ k.

• Y = 𝑥𝑥 2 = ∑𝑖𝑖=1𝑘𝑘 𝑥𝑥𝑖𝑖2 - chi-square distributed with k degrees of freedom given by

• 𝑓𝑓𝑌𝑌(y) = 1

2𝑘𝑘/2 Ґ(𝑘𝑘2)
𝑦𝑦
𝑘𝑘
2−1 𝑒𝑒

−𝑦𝑦
2 ------------------------------------->  (15)

• Mean of Y = E[ x 2] = k  ------------------------------------> (16)

• Var of Y = VAR( x 2) = 2k ------------------------------------> (16)
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Chi- distribution of x

• Let Z = x

• Z said to chi-distributed

𝑓𝑓𝑍𝑍(z) = 1

2
𝑘𝑘
2−1Ґ(𝑘𝑘2)

𝑧𝑧𝑘𝑘−1 𝑒𝑒
−𝑧𝑧2

2 ---------------------------------------------> (17)

• Mean of z = E[ x ] = 2
Ґ(𝑘𝑘2+1)

Ґ(𝑘𝑘2)
----------------------------------> (18)

• Var of Z = k - µ2 ------------------------------------------------------> (18)
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Properties of x : concentration of x

• Setting n =k +1.

• E[ x ] = 𝑛𝑛 − 1 [1 - 1
4𝑛𝑛

]

• Var ( x ) = 𝑛𝑛 −1
2𝑛𝑛

≈ 1
2

------------------------------------------> (19)

k n E[ x ] Var ( x ) 

10 11 3.09 0.4545

50 51 7.106 0.4902

100 101 10.035 0.4905

500 501 22.35 0.4995
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Impact of high dimension in statistics: Linear
discriminant analysis : Population based analysis
• Two Gaussian distribution 𝑃𝑃1 𝑥𝑥 = N (µ1, ∑) and 𝑃𝑃2 𝑥𝑥 = N (µ2, ∑) , x∈ Rd .

• Mixture : P(x) = 𝑝𝑝1 𝑃𝑃1 𝑥𝑥 + 𝑝𝑝2 𝑃𝑃2 𝑥𝑥 , 𝑝𝑝1> 0 and 𝑝𝑝1 + 𝑝𝑝2 = 1.

• A sample is drawn from P(x) and need to identify which class it belongs to.
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Standard Algorithm
• Compute L = log (𝑃𝑃2 𝑥𝑥

𝑃𝑃1 𝑥𝑥
)

• L = Ψ (x) = <µ2 - µ1, ∑−1 (x - µ2 + µ1
2

) > ---------------------------> (20)

• Linear statistic.

• Optimum decision rule is based on thresholding Ψ (x).

• When µ1 = 1 and µ2 = -1: T =0 is a good threshold.
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Error probability
• Set 𝑝𝑝1 = 𝑝𝑝2 = ½

• Error (Ψ) = ½ [𝑃𝑃1[Ψ (x’) ≤ 0] + 𝑃𝑃2[Ψ (x”) > 0] ]

• x’ and x’’ are drawn from 𝑃𝑃1 𝑥𝑥 and 𝑃𝑃2 𝑥𝑥 .

• Error (Ψ) = 1
2П ∫−∞

−𝑟𝑟2 𝑒𝑒−
𝑡𝑡2

2 dt = ф (- 𝑟𝑟
2

) ----------------------------------------> (21)

• 𝑟𝑟2 = ( µ1 − µ2 ) ∑−1 ( µ1 − µ2 )  : Mahalanobis Distance.
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Sample Counterpart
• We do not know the conditional distributions.

• Given a set of labelled samples: {𝑥𝑥1, 𝑥𝑥2, …., 𝑥𝑥𝑛𝑛1} from 𝑃𝑃1 𝑥𝑥 , {𝑥𝑥𝑛𝑛1+1, 𝑥𝑥𝑛𝑛1+2, …., 𝑥𝑥𝑛𝑛1+𝑛𝑛2}  from 
𝑃𝑃2 𝑥𝑥

• Sample mean : �µ1 = 1
𝑛𝑛1
∑𝑖𝑖=1
𝑛𝑛1 𝑥𝑥𝑖𝑖 and �µ2 = 1

𝑛𝑛2
∑𝑖𝑖=1
𝑛𝑛2 𝑥𝑥𝑖𝑖+𝑛𝑛1

• Pooled sample covariance:

• �∑ = 1
𝑛𝑛1−1

∑𝑖𝑖=1
𝑛𝑛1 (𝑥𝑥𝑖𝑖 - �µ1)(𝑥𝑥𝑖𝑖 − µ1)𝑇𝑇 + 1

𝑛𝑛2−1
∑𝑖𝑖=1
𝑛𝑛2 (𝑥𝑥𝑖𝑖+𝑛𝑛1 - �µ2)(𝑥𝑥𝑖𝑖+𝑛𝑛1 − µ2)𝑇𝑇
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Fisher’s Linear discriminant function
• �Ψ (x) = < �µ1 - �µ2 , �∑−1 ( x -

�µ1 + �µ2
2

) >       -------------------------------------> (22)

• Assume 𝑛𝑛𝑖𝑖 > d and �∑ is invertible.

• Error (�Ψ) =  ½ [𝑃𝑃1[�Ψ (x’) ≤ 0] + 𝑃𝑃2[�Ψ (x”) > 0] ]    ---------------------------> (23)
where x’ and x’’ are samples from 𝑃𝑃1 𝑥𝑥 and 𝑃𝑃2 𝑥𝑥 .
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Kolmogorov’s analysis (1960’s)
• Assume ∑ = I and �Ψ𝑖𝑖𝑑𝑑(x) = < �µ1 - �µ2 , x -

�µ1 + �µ2
2

> 

• When (𝑛𝑛1 = 𝑛𝑛2 , d) and grow with out bound with ratios 𝑑𝑑
𝑛𝑛

-> α > 0.

• Let �µ1 − �µ2 -> a constant ϒ > 0.
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Kolmogorov’s Analysis Continued
• In this scaling:

Error (�Ψ𝑖𝑖𝑑𝑑) -> ф (- 𝑟𝑟2

2 𝑟𝑟2+α ) in probability   -----------------------------------> (24)

• Since 𝑟𝑟2

2 𝑟𝑟2+α < 𝑟𝑟
2

, Error (�Ψ𝑖𝑖𝑑𝑑)  is larger than when α = 0.

• Clear demonstration of high- dimensional effect and resulting sub optimality.

• When  𝑑𝑑
𝑛𝑛

= α = 0 , we get the classical asymptotic result.
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Covariance estimation: Effect of high dimension

• Let {𝑥𝑥1, 𝑥𝑥2, …., 𝑥𝑥𝑛𝑛} be an i.i.d samples from a distribution with zero mean where 𝑥𝑥𝑖𝑖 ∈ Rd .

• That is, we have n points chosen at random in Rd .

• Let x = {𝑥𝑥1, 𝑥𝑥2, …., 𝑥𝑥𝑛𝑛} ∈ Rd x n – Data matrix.
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Estimate Covariance matrix

• Sample Covariance : �∑ = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑇𝑇 =  1

𝑛𝑛
𝑥𝑥𝑥𝑥𝑇𝑇 ∈ Rd x d

• �∑ is unbiased : E (�∑) = ∑ .

• �∑ -> ∑ , the population covariance as n -> ∞ when d is fixed – classical convergence.
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Measure of distance between �∑ and ∑
• Matrix norm – spectral norm, can be used �∑ − ∑ 2 = 𝑠𝑠𝑠𝑠𝑝𝑝 𝑢𝑢 2=1

�∑ − ∑ 𝑠𝑠 2 ---------------> (25)

• It can be proved : �∑ − ∑ 2 -> 0 and n -> ∞ .

• That is, sample covariance is strongly consistent estimate of ∑ is classical setting.
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High dimensional effect
• Let n and d grow, but 𝑑𝑑

𝑛𝑛
= α ∈ (0,1).

• Estimate �∑ and compute its spectrum.

• Let λ𝑚𝑚𝑎𝑎𝑥𝑥 (�∑) = λ1 ≥ λ2 ≥ … . ≥ λ𝑑𝑑 =  λ𝑚𝑚𝑖𝑖𝑛𝑛 (�∑) ≥ 0.
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Special case ∑ = I 

• In this special case when 𝑑𝑑
𝑛𝑛

= α ∈ (0,1) eigen values λ𝑖𝑖 are all dispersed around 1.

• Empirical distribution of λ ‘s for α = 0.2 and 0.5.

Density

1
n = 4000, d = 800, α = 0.2

λ

Density

1λ
n = 4000, d = 2000, α = 0.5
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Marcenko – Pastur law (1967) : Impact of High -
dimension
• M-P law : They proved that the density of distribution of λ ‘s is supported on the interval [ 𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛

(α), 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥 (α)] where 𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛 (α) = 1 − α 2 and 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥 (α) = 1 + α 2.

• This law allows (d, n) to increase but 𝑑𝑑
𝑛𝑛

= α ∈ (0,1)  - has a non – classical flavor.
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