Mathematics of Bigdata Analysis: An Introduction

S. Lakshmivarahan School of Computer Science University of Oklahoma Norman, OK-73019 varahan@ou.edu

Abundance of data

- Thanks to the advances in technology of
 - Sensors
 - Wireless Communication
 - Mass storage devices
 - Large super computers
- Shift from data sparse to data rich regime amount of data doubles in every few years.

Data organization

- Time Series : Number of daily new covid infection in a city.
- **Spatial**: Number of infected in every country on a given time.
- **Spatial-temporal**: Monthly rain fall in each of 50 states in the US.
- Data Matrix: X: $[x_1, x_2, x_3..., x_n]$, $x_i \in \mathbb{R}^d$, Represents n points in d- dimensional space.

"Big" in Bigdata

- In the matrix form $x \in \mathbb{R}^{d \times n}$: Two variables.
- n is the number of data (columns).
- d is the dimension of the space (rows)
- In general: either n or d or both can be large.
- Similar measures apply for other data organization.

Classical Statistics

• In classical mathematical statistics there are a number of asymptotic results obtained by fixing d and letting the number of samples to increase without bound such that the ratio

$$\frac{d}{n} \rightarrow 0$$

• This asymptotic theory provides the basis for estimation theory.

Examples 1

• Law of Large Numbers (LLN): If x_i , $1 \le i \le n$ is i.i.d sequence of random variables from, say normal distribution N (m, σ^2) with unknown m.

----> 1

- $\bar{x}(n) = \frac{1}{n} \sum_{i=1}^{n} x_i$ is an unbiased estimate.
- LLN: prob [$|\bar{x}(n) m| > \varepsilon$] -> 0 or n -> ∞
- This is called asymptotic consistency.
- Also known as measure concentration.

Examples 2

- Central Limit Theorem (CLT):
- In addition to (1), the following stronger result hold:

 $\frac{\sqrt{n} (\bar{x}(n) - m)}{\sigma} \quad \text{-----> N(0,1)} \quad \text{------> (2)}$ in distribution

• That is, centered and scaled estimate converges in distribution to a standard normal Gaussian variable.

High dimensional data

- Consider a set of n = 100 color images of a human retina with 256 x 256 = 65, 536 pixels in each of the three frames representing Red, Blue and Green with a total of d = 65, 536 x 3 = 196, 608 pixels.
- Here $x \in \mathbb{R}^{d \times n}$ where d >> n
- In here, $\frac{d}{n} = \alpha > 0$

Implications of
$$\frac{d}{n} = \alpha > 0$$

- Many of the known results from classical statistics when applied to this case, $\frac{d}{n} = \alpha > 0$ give only "suboptimal" guarantees.
- To address this challenge a new specialty is emerging.
- M.J. Wainwright (2019) High-Dimensional Statistics: A non-asymptotic viewpoint, Cambridge university Press.
- R.Vershynin (2020) High-Dimensional Probability: An Introduction with Application in Data Science Cambridge University Press.

Curse of dimensionality

- Coined by Richard Bellman (1920 1984) when developing.
- R.Bellman (1952) "Theory of Dynamic Programming", Proc of NAS, pp 716-719.
- Finding optimal solution for multistage decision process often require 2^d computation.
- The popular Reinforcement Learning (RL) is based on the theory of Markov Decision Process is an example of the application of DP.

Counter intuitive results in High dimension

- Empty space High dimensional geometry.
- Concentration of distances, measures, functions.
- Statistical two class classification.
- Estimation of covariance matrices.

Hyper cube V_c (d,a) in R^d

- $V_c(d,a)$ hypercube of side "a" in R^d .
- Diagonal AB in $V_c(2,1)$:

AB = 2 * OA = 2
$$\left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]^{1/2} = \sqrt{2}$$

• Diagonal AB in $V_c(d,1)$:

AB = 2 * OA = 2
$$\left[\sum_{i=1}^{d} \left(\frac{1}{2}\right)^2\right]^{1/2} = \sqrt{d}$$
 -----> (4)

• Diagonal increases as \sqrt{d} while the side of the cube remains constraint as d increases.

Empty space in R^d

- Volume of $V_c(d,a) = a^d$.
- If we double the side : $V_c(d, 2a) = 2^d V_c(d, a)$

- Volume of the cube grows exponentially when you double its side.
- Creates a lot of empty space.

Spheres in R^d : V_s (d,r)

• $V_s(d,r)$ – a sphere of radius r in R^d .

• Vol
$$[V_s(d,r)] = \frac{\Pi^{d/2}}{\Gamma(\frac{d}{2}+1)} r^d$$
 ------> (6)

• For integer k: $\Gamma(k + 1) = k \Gamma(k)$ and $\Gamma(k + 1) = k!$ -----> (7) $\Gamma(1/2) = \sqrt{\prod}$

Unit Sphere : V_s (d,1)

- Vol [V_s (d,1)] = $\frac{\Pi^{d/2}}{\Gamma(\frac{d}{2}+1)}$ ->0 as d-> ∞
- Vol $[V_s (3,1)] = \frac{4}{3}\Pi = 4.1867$ Vol $[V_s (10,1)] = \frac{\Pi^{10}}{10!} = 0.0258$
- **<u>Question</u>** : For what values of r, Vol [V_s (d,r)] =1
- Using Strilings approximation to n! :

$$\mathsf{n}! = \sqrt{2\Pi n} \left(\frac{n}{e}\right)^n$$

- Verify r= O(\sqrt{d}) for Vol [V_s (d,r)] =1
- Empty space syndrome.

Cube inside a cube

- Consider a unit cube inside a concentric unit sphere in R^d.
- Have seen AB = \sqrt{d}
- For d < 4, AB < 2 and inside the sphere.
 d = 4, AB = 2 and AB is a diameter.
 d > 4, AB > 2 and punches through the sphere.
- For large d, 2^d diagonals get out of the sphere.
- It looks like the picture of the COVID virus.

 V_{c} (d,1) \subseteq V_{s} (d,1)

Sphere in a Sphere

• Let r < R, concentric spheres of radii r and R.

•
$$\frac{V_{s}(d,R) - V_{s}(d,r)}{V_{s}(d,R)} = 1 - \frac{V_{s}(d,r)}{V_{s}(d,R)} \quad ----> (8)$$
$$= 1 - \left(\frac{r}{R}\right)^{d} \quad -> 1 \text{ as d increases.}$$

(i.e.) Volume of the sphere reside near the empty space shell.

Sphere in a cube

• Ratio
$$\alpha = \frac{V_s(d,r)}{V_c(d,2r)}$$

= $\frac{\Pi^{d/2} \Gamma^d}{\Gamma(\frac{d}{2}+1)} \frac{1}{(2r)^d} = \left(\frac{\Pi}{4}\right)^{d/2} \frac{1}{\Gamma(\frac{d}{2}+1)} \rightarrow 0$
as d increases -----> (9)

- Fraction of the volume of the cube trapped inside the sphere goes to zero as d increases.
- Empty space at the center and volume of the cube is concentrated at its 2^d corners.

2r

Pairwise distances in R^2

- Consider $V_c(2,1)$: Generate 1001 independent, identically distributed in $V_c(2,1)$.
- Fix one of the point and call it $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)^T$.
- Compute for each of the rest of 1000 points $D^{2}(x, y) = [(x_{1}-y_{1})^{2} + (x_{2}-y_{2})^{2}] (y \neq x).$

 $V_{c}(2,1)$

- Clearly $0 \le D^2(x, y) \le 2$ for all $y \ne x$ since $|x_1 y_1| \le 1$ and $|x_2 y_2| \le 1$.
- Histogram of $D^2(x, y)$ is fully supported on [0,2].

Pairwise distances in R^2 : d =100

• Repeat the above experiment in $V_c(d, 1)$.

• Here
$$\begin{cases} x = (x_1, x_2, \dots x_d)^T \\ y = (y_1, y_2, \dots y_d)^T \end{cases}$$
 with $|x_i - y_i| \le 1$

•
$$D^2(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d (x_i - y_i)^2$$
 -----> (10)

• Clearly $0 \le D^2(x, y) \le 100$.

• A lot more is true – thanks to the law of large numbers.

Concentration of distances

- Clearly x_i 's and y_i 's , $(x_i y_i)^2$ are i.i.d random variables with finite mean and variance.
- $D^2(x, y) = \sum_{i=1}^d (x_i y_i)^2$ is the sum of i.i.d random variables.
- By the law of large numbers, the distribution of $D^2(x, y)$ is concentrated in the interval [0,100] around the mean.
- For small d, this distribution is spread out in [0,d] but for large d, it gets concentrated.

Gaussian distribution in R^d

• $x \in \mathbb{R}^d$, $m \in \mathbb{R}^d \sum \mathbb{R}^{d \times d}$.

•
$$X \sim N(m, \Sigma) = \frac{1}{(2\Pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x-m)^T \sum^{-1} (x-m)\right]$$
 -----> (11)

•
$$X \sim N(0, \sigma^2 I) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\Pi}\sigma} \exp\left[-\frac{x_i^2}{2\sigma^2}\right] ----> (12)$$

- $E[||x||^2] = dE(x_1^2) = d\sigma^2$ -----> (13) Since x_i are i.i.d N (0, σ^2).
- For large d, the random variable $||x||^2$ is concentrated about its mean d σ^2 .
- $\sigma\sqrt{d}$ is called the radius of the Gaussian.

Tail probability of N(0,1) in R^1

• Consider N(0,1)

• Let r(a) = $\frac{1}{\sqrt{2\Pi}} \int_{-a}^{a} \exp\left(\frac{x^2}{2}\right) dx$ = Area under N(0,1) between –a and a.

а	r(a)	Tail : 1 – r(a)
1	0.683	0.317
2	0.955	0.045
3	0.997	0.003

Tail probability of N(0,I) in R^d

• Probability that lies outside a sphere of radius 1.

d	1	2	5	10	20	100
Ρ	0.317	0.1353	0.5494	0.9473	0.999	1.0

- N(0, I) still attains its maximum at x =0.
- For large d, tail has more information.
- Probability of N(0,I) contained in a thin annulus around $||\mathbf{x}||^2 = d$ P[$\sqrt{d} - \beta \le ||\mathbf{x}||^2 \le \sqrt{d} + \beta$] $\ge 1-3 e^{-\alpha\beta^2}$, where $\beta < \sqrt{d}$ and $\alpha > 0$ is a constant.

Chi- square distribution of $||x||^2$

- Let $x \in \mathbb{R}^k$, $x_i \sim \text{i.i.d. N(0,1)}$ for $1 \le i \le k$.
- Y = $||x||^2 = \sum_{i=1}^k x_i^2$ chi-square distributed with k degrees of freedom given by

•
$$f_Y(y) = \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} y^{\frac{k}{2}-1} e^{\frac{-y}{2}}$$
 -----> (15)

- Mean of $Y = E[||x||^2] = k$ -----> (16)
- Var of Y = VAR(||x||²) = 2k -----> (16)

Chi- distribution of ||x||

- Let Z = ||x||
- Z said to chi-distributed

 $f_Z(z) = \frac{1}{2^{\frac{k}{2}-1} \Gamma(\frac{k}{2})} z^{k-1} e^{\frac{-z^2}{2}} \dots (17)$

- Mean of z = E[$\|x\|$] = $\sqrt{2} \frac{\Gamma(\frac{k}{2}+1)}{\Gamma(\frac{k}{2})}$ -----> (18)
- Var of Z = k μ^2 -----> (18)

Properties of ||x|| : concentration of ||x||

- Setting n =k +1.
- $E[||x||] = \sqrt{n-1} \left[1 \frac{1}{4n}\right]$

• Var (||x||) = $\frac{n-1}{2n} \approx \frac{1}{2}$ -----> (19)

k	n	E[x]	Var (x)
10	11	3.09	0.4545
50	51	7.106	0.4902
100	101	10.035	0.4905
500	501	22.35	0.4995

Impact of high dimension in statistics: Linear discriminant analysis : Population based analysis

• Two Gaussian distribution $P_1(x) = N(\mu_1, 5)$ and $P_2(x) = N(\mu_2, 5)$, $x \in \mathbb{R}^d$.

• Mixture : $P(x) = p_1 P_1(x) + p_2 P_2(x)$, $p_1 > 0$ and $p_1 + p_2 = 1$.

• A sample is drawn from P(x) and need to identify which class it belongs to.

Standard Algorithm

- Compute L = log $\left(\frac{P_2(x)}{P_1(x)}\right)$
- $L = \Psi(x) = \langle \mu_2 \mu_1, \Sigma^{-1}(x \frac{\mu_2 + \mu_1}{2}) \rangle$ -----> (20)
- Linear statistic.
- Optimum decision rule is based on thresholding Ψ (x).
- When $\mu_1 = 1$ and $\mu_2 = -1$: T =0 is a good threshold.

Error probability

- Set $p_1 = p_2 = \frac{1}{2}$
- Error $(\Psi) = \frac{1}{2} [P_1[\Psi(x') \le 0] + P_2[\Psi(x'') > 0]]$
- x' and x'' are drawn from $P_1(x)$ and $P_2(x)$.

• Error
$$(\Psi) = \frac{1}{\sqrt{2\Pi}} \int_{-\infty}^{-\frac{r}{2}} e^{-\frac{t^2}{2}} dt = \phi(-\frac{r}{2})$$
 -----> (21)

• $r^2 = (\mu_1 - \mu_2) \sum^{-1} (\mu_1 - \mu_2)$: Mahalanobis Distance.

Sample Counterpart

- We do not know the conditional distributions.
- Given a set of labelled samples: $\{x_1, x_2, ..., x_{n_1}\}$ from $P_1(x)$, $\{x_{n_1+1}, x_{n_1+2}, ..., x_{n_1+n_2}\}$ from $P_2(x)$

• Sample mean :
$$\widehat{\mu_1} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i$$
 and $\widehat{\mu_2} = \frac{1}{n_2} \sum_{i=1}^{n_2} x_{i+n_1}$

• Pooled sample covariance:

•
$$\widehat{\Sigma} = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \widehat{\mu_1}) (x_i - \mu_1)^T + \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (x_{i+n_1} - \widehat{\mu_2}) (x_{i+n_1} - \mu_2)^T$$

Fisher's Linear discriminant function

- $\widehat{\Psi}(x) = \langle \widehat{\mu_1} \widehat{\mu_2} \rangle, \ \widehat{\Sigma}^{-1}(x \frac{\widehat{\mu_1} + \widehat{\mu_2}}{2}) \rangle$ -----> (22)
- Assume $n_i > d$ and $\widehat{\Sigma}$ is invertible.
- Error $(\widehat{\Psi}) = \frac{1}{2} [P_1[\widehat{\Psi}(x') \le 0] + P_2[\widehat{\Psi}(x'') > 0]]$ ------> (23) where x' and x'' are samples from $P_1(x)$ and $P_2(x)$.

Kolmogorov's analysis (1960's)

• Assume
$$\sum = I$$
 and $\widehat{\Psi}_{id}(\mathbf{x}) = \langle \widehat{\mu_1} - \widehat{\mu_2} \rangle \mathbf{x} - \frac{\widehat{\mu_1} + \widehat{\mu_2}}{2} \rangle$

• When $(n_1 = n_2, d)$ and grow with out bound with ratios $\frac{d}{n} \rightarrow \alpha > 0$.

• Let $\| \widehat{\mu_1} - \widehat{\mu_2} \| \rightarrow a \text{ constant } \Upsilon > 0.$

Kolmogorov's Analysis Continued

• In this scaling:

Error $(\widehat{\Psi}_{id}) \rightarrow \phi(-\frac{r^2}{2\sqrt{r^2+\alpha}})$ in probability ------> (24)

• Since
$$\frac{r^2}{2\sqrt{r^2+\alpha}} < \frac{r}{2}$$
, Error ($\widehat{\Psi}_{id}$) is larger than when $\alpha = 0$.

• Clear demonstration of high- dimensional effect and resulting sub optimality.

• When
$$\frac{d}{n} = \alpha = 0$$
, we get the classical asymptotic result.

Covariance estimation: Effect of high dimension

- Let $\{x_1, x_2, ..., x_n\}$ be an i.i.d samples from a distribution with zero mean where $x_i \in \mathbb{R}^d$.
- That is, we have n points chosen at random in R^d.
- Let $x = \{x_1, x_2, ..., x_n\} \in \mathbb{R}^{d \times n}$ Data matrix.

Estimate Covariance matrix

- Sample Covariance : $\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T = \frac{1}{n} x x^T \in \mathbb{R}^{d \times d}$
- $\widehat{\Sigma}$ is unbiased : E ($\widehat{\Sigma}$) = Σ .
- $\widehat{\Sigma} \rightarrow \Sigma$, the population covariance as n $\rightarrow \infty$ when d is fixed classical convergence.

Measure of distance between $\widehat{\Sigma}$ and Σ

- Matrix norm spectral norm, can be used $\|\widehat{\Sigma} \Sigma\|_2 = \sup_{\|u\|_2 = 1} \|(\widehat{\Sigma} \Sigma)u\|_2$ -----> (25)
- It can be proved : $\left\| \widehat{\Sigma} \Sigma \right\|_2 \rightarrow 0$ and $n \rightarrow \infty$.
- That is, sample covariance is strongly consistent estimate of \sum is classical setting.

High dimensional effect

- Let n and d grow, but $\frac{d}{n} = \alpha \in (0,1)$.
- Estimate $\widehat{\Sigma}$ and compute its spectrum.
- Let λ_{max} $(\widehat{\Sigma}) = \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d = \lambda_{min}$ $(\widehat{\Sigma}) \ge 0$.

Special case
$$\sum = I$$

• In this special case when $\frac{d}{n} = \alpha \in (0,1)$ eigen values λ_i are all dispersed around 1.

• Empirical distribution of λ 's for α = 0.2 and 0.5.

Marcenko – Pastur law (1967) : Impact of High - dimension

- M-P law : They proved that the density of distribution of λ 's is supported on the interval [t_{min} (α), t_{max} (α)] where t_{min} (α) = $(1 \sqrt{\alpha})^2$ and t_{max} (α) = $(1 + \sqrt{\alpha})^2$.
- This law allows (d, n) to increase but $\frac{d}{n} = \alpha \in (0,1)$ has a non classical flavor.

References

[1] M.J. Wainwright (2019) High- Dimensional Statistics: a non – asymptotic viewpoint, Cambridge University Press.

[2] R. Vershynin (2020) High- Dimensional Probability: An introduction with application in Data Science, Cambridge University Press.

[3] A. Blum, J. Hopcroft and R. Kannan (2020) Foundation of Data Science, Cambridge University Press.

[4] V.Shikhman and D. Mueller (2021) Mathematical Foundation of Big Data Analysis, Springer.

[5] J.Wang (2012) Geometric Structure of High- Dimensional Data and Dimensionality reduction, Springer.