Mathematics of Bigdata Analysis: An Introduction

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, OK-73019
varahan@ou.edu

Abundance of data

- Thanks to the advances in technology of
- Sensors
- Wireless Communication
- Mass storage devices
- Large super computers
- Shift from data sparse to data rich regime - amount of data doubles in every few years.

Data organization

- Time Series : Number of daily new covid infection in a city.
- Spatial: Number of infected in every country on a given time.
- Spatial-temporal: Monthly rain fall in each of 50 states in the US.
- Data Matrix: $\mathrm{X}:\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots \mathrm{x}_{\mathrm{n}}\right], \mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}},-$ Represents n points in d-dimensional space.

"Big" in Bigdata

- In the matrix form $x \in R^{d x n}$: Two variables.
- n - is the number of data (columns).
- d - is the dimension of the space (rows)
- In general: either n or d or both can be large.
- Similar measures apply for other data organization.

Classical Statistics

- In classical mathematical statistics there are a number of asymptotic results obtained by fixing d and letting the number of samples to increase without bound such that the ratio

$$
\frac{d}{n}->0
$$

- This asymptotic theory provides the basis for estimation theory.

Examples 1

- Law of Large Numbers (LLN): If $x_{i}, 1 \leq i \leq n$ is i.i.d sequence of random variables from, say normal distribution $\mathrm{N}\left(\mathrm{m}, \sigma^{2}\right)$ with unknown m .
- $\bar{x}(\mathrm{n})=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is an unbiased estimate.
- LLN: $\operatorname{prob}[|\bar{x}(\mathrm{n})-\mathrm{m}|>\varepsilon]->0$ or $\mathrm{n}->\infty$
- This is called asymptotic consistency.
- Also known as measure concentration.

Examples 2

- Central Limit Theorem (CLT):
- In addition to (1), the following stronger result hold:

- That is, centered and scaled estimate converges in distribution to a standard normal Gaussian variable.

High dimensional data

- Consider a set of $n=100$ color images of a human retina with $256 \times 256=65,536$ pixels in each of the three frames representing Red, Blue and Green with a total of $d=65,536 \times 3=196,608$ pixels.
- Here $x \in R^{d x n}$ where $d \gg n$
- In here, $\frac{d}{n}=\alpha>0$

Implications of $\frac{d}{n}=\alpha>0$

- Many of the known results from classical statistics when applied to this case, $\frac{d}{n}=\alpha>0$ give only "suboptimal" guarantees.
- To address this challenge a new specialty is emerging.
- M.J. Wainwright (2019) High-Dimensional Statistics: A non- asymptotic viewpoint, Cambridge university Press.
- R.Vershynin (2020) High-Dimensional Probability: An Introduction with Application in Data Science Cambridge University Press.

Curse of dimensionality

- Coined by Richard Bellman (1920-1984) when developing.
- R.Bellman (1952) "Theory of Dynamic Programming", Proc of NAS, pp 716-719.
- Finding optimal solution for multistage decision process often require $2^{\text {d }}$ computation.
- The popular Reinforcement Learning (RL) is based on the theory of Markov Decision Process is an example of the application of DP.

Counter intuitive results in High dimension

- Empty space - High dimensional geometry.
- Concentration of distances, measures, functions.
- Statistical two class classification.
- Estimation of covariance matrices.

Hyper cube $\mathrm{V}_{\mathrm{c}}(\mathrm{d}, \mathrm{a})$ in R^{d}

- $V_{c}(d, a)$ - hypercube of side "a" in R^{d}.
- Diagonal $A B$ in $\mathrm{V}_{\mathrm{c}}(2,1)$:

$$
A B=2 * O A=2\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right]^{1 / 2}=\sqrt{2}
$$

V $(2,1)$
(4)

- Diagonal increases as \sqrt{d} while the side of the cube remains constraint as d increases.

Empty space in R^{d}

- Volume of $\mathrm{V}_{\mathrm{c}}(\mathrm{d}, \mathrm{a})=\mathrm{a}^{\mathrm{d}}$.
- If we double the side : $V_{c}(d, 2 a)=2^{d} V_{c}(d, a)$
- Volume of the cube grows exponentially when you double its side.
- Creates a lot of empty space.

Spheres in $R^{d}: V_{s}(d, r)$

- $V_{s}(d, r)$ - a sphere of radius r in R^{d}.
- $\operatorname{Vol}\left[\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{r})\right]=\frac{\Pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} \mathrm{r}^{\mathrm{d}}$

- For integer $\mathrm{k}: \Gamma(k+1)=\mathrm{k} \Gamma(k)$ and $\Gamma(k+1)=\mathrm{k}$!
----------> (7)
$\digamma(1 / 2)=\sqrt{\Pi}$

Unit Sphere : $\mathrm{V}_{\mathrm{s}}(\mathrm{d}, 1)$

- $\operatorname{Vol}\left[\mathrm{V}_{\mathrm{s}}(\mathrm{d}, 1)\right]=\frac{\Pi^{d / 2}}{r\left(\frac{d}{2}+1\right)}->0$ as $d->\infty$
- $\operatorname{Vol}\left[\mathrm{V}_{\mathrm{s}}(3,1)\right]=\frac{4}{3} \Pi=4.1867$
$\operatorname{Vol}\left[\mathrm{V}_{\mathrm{s}}(10,1)\right]=\frac{\Pi^{10}}{10!}=0.0258$
- Question : For what values of $r, \operatorname{Vol}\left[\mathrm{~V}_{\mathrm{s}}(\mathrm{d}, \mathrm{r})\right]=1$
- Using Strilings approximation to n !:

$$
\mathrm{n}!=\sqrt{2 \Pi n}\left(\frac{n}{e}\right)^{n}
$$

- Verify $\mathrm{r}=\mathrm{O}(\sqrt{d})$ for $\operatorname{Vol}\left[\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{r})\right]=1$
- Empty space syndrome.

Cube inside a cube

- Consider a unit cube inside a concentric unit sphere in R^{d}.
- Have seen $A B=\sqrt{d}$
- For $\mathrm{d}<4, \mathrm{AB}<2$ and inside the sphere.
$d=4, A B=2$ and $A B$ is a diameter.
$d>4, A B>2$ and punches through the sphere.
- For large $d, 2^{d}$ diagonals get out of the sphere.

$V_{c}(d, 1) \subseteq V_{s}(d, 1)$
- It looks like the picture of the COVID virus.

Sphere in a Sphere

- Let $r<R$, concentric spheres of radii r and R.
- $\frac{\mathrm{V}_{\mathrm{s}}(\mathrm{d}, R)-\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{r})}{\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{R})}=1-\frac{\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{r})}{\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{R})}$

$$
=1-\left(\frac{r}{R}\right)^{d} \quad->1 \text { as d increases. }
$$

(i.e.) Volume of the sphere reside near the empty space shell.

Sphere in a cube

- Ratio $\alpha=\frac{\mathrm{V}_{\mathrm{s}}(\mathrm{d}, \mathrm{r})}{\mathrm{V}_{\mathrm{c}}(\mathrm{d}, 2 r)}$

$$
\begin{align*}
& =\frac{\Pi^{d / 2} r^{d}}{\Gamma\left(\frac{d}{2}+1\right)} \frac{1}{(2 r)^{d}}=\left(\frac{\Pi}{4}\right)^{d / 2} \frac{1}{\Gamma\left(\frac{d}{2}+1\right)}->0 \\
& \text { as } \mathrm{d} \text { increases } \tag{9}
\end{align*}
$$

- Fraction of the volume of the cube trapped inside the sphere goes to zero as d increases.

- Empty space at the center and volume of the cube is concentrated at its 2^{d} corners.

Pairwise distances in R^{2}

- Consider $\mathrm{V}_{\mathrm{c}}(2,1)$: Generate 1001 independent, identically distributed in $V_{c}(2,1)$.
- Fix one of the point and call it $x=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{T}$.
- Compute for each of the rest of 1000 points

$$
D^{2}(\mathrm{x}, \mathrm{y})=\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right](\mathrm{y} \neq \mathrm{x}) .
$$

$V_{c}(2,1)$

- Clearly $0 \leq D^{2}(\mathrm{x}, \mathrm{y}) \leq 2$ for all $\mathrm{y} \neq \mathrm{x}$ since $\left|x_{1}-y_{1}\right| \leq 1$ and $\left|x_{2}-y_{2}\right| \leq 1$.
- Histogram of $D^{2}(\mathrm{x}, \mathrm{y})$ is fully supported on $[0,2]$.

Pairwise distances in $R^{2}: \mathrm{d}=100$

- Repeat the above experiment in $\mathrm{V}_{\mathrm{c}}(\mathrm{d}, 1)$.
- Here $\left\{\begin{array}{l}x=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{d}}\right)^{T} \\ y=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{d}}\right)^{T}\end{array}\right.$ with $\left|x_{i}-y_{i}\right| \leq 1$
- $D^{2}(x, y)=\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}-----------------\gg(10)$
- Clearly $0 \leq D^{2}(\mathrm{x}, \mathrm{y}) \leq 100$.

$V_{c}(\mathrm{~d}, 1)$
- A lot more is true - thanks to the law of large numbers.

Concentration of distances

- Clearly x_{i} 's and y_{i} 's , $\left(x_{i}-y_{i}\right)^{2}$ are i.i.d random variables with finite mean and variance.
- $D^{2}(\mathrm{x}, \mathrm{y})=\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}$ is the sum of i.i.d random variables.
- By the law of large numbers, the distribution of $D^{2}(x, y)$ is concentrated in the interval $[0,100]$ around the mean.
- For small d, this distribution is spread out in $[0, d]$ but for large d, it gets concentrated.

Gaussian distribution in R^{d}

- $x \in R^{d}, m \in R^{d} \sum R^{d x d}$.
- $\mathrm{X} \sim \mathrm{N}(\mathrm{m}, \Sigma)=\frac{1}{(2 \Pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathrm{x}-m)^{T} \Sigma^{-1}(\mathrm{x}-\mathrm{m})\right]$
- $\mathrm{X} \sim \mathrm{N}\left(0, \sigma^{2} I\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \Pi} \sigma} \exp \left[-\frac{x_{i}^{2}}{2 \sigma^{2}}\right]$
- $E\left[\|x\|^{2}\right]=d E\left(x_{1}^{2}\right)=d \sigma^{2}$

Since x_{i} are i.i.d $\mathrm{N}\left(0, \sigma^{2}\right)$.

- For large d, the random variable $\|x\|^{2}$ is concentrated about its mean $d \sigma^{2}$.
- $\sigma \sqrt{d}$ is called the radius of the Gaussian.

Tail probability of $\mathrm{N}(0,1)$ in R^{1}

- Consider N(0,1)
- Let $r(a)=\frac{1}{\sqrt{2 \Pi}} \int_{-a}^{a} \exp \left(\frac{x^{2}}{2}\right) d x=$ Area under $N(0,1)$ between $-a$ and a.

a	$r(a)$	Tail $: 1-r(a)$
1	0.683	0.317
2	0.955	0.045
3	0.997	0.003

Tail probability of $\mathrm{N}(0, \mathrm{I})$ in R^{d}

- Probability that lies outside a sphere of radius 1.

d	1	2	5	10	20	100
P	0.317	0.1353	0.5494	0.9473	0.999	1.0

- $N(0, I)$ still attains its maximum at $x=0$.
- For large d, tail has more information.
- Probability of $N(0, I)$ contained in a thin annulus around $\|x\|^{2}=d$
$P\left[\sqrt{d}-\beta \leq\|x\|^{2} \leq \sqrt{d}+\beta\right] \geq 1-3 e^{-\alpha \beta^{2}}$, where $\beta<\sqrt{d}$ and $\alpha>0$ is a constant.

Chi- square distribution of $\|x\|^{2}$

- Let $\mathrm{x} \in \mathrm{R}^{\mathrm{k}}, x_{i} \sim \mathrm{i} . \mathrm{i} . \mathrm{d} . \mathrm{N}(0,1)$ for $1 \leq \mathrm{i} \leq \mathrm{k}$.
- $\mathrm{Y}=\|x\|^{2}=\sum_{i=1}^{k} x_{i}^{2}$ - chi-square distributed with k degrees of freedom given by
- $f_{Y}(y)=\frac{1}{2^{k / 2}\left\lceil\left(\frac{k}{2}\right)\right.} y^{\frac{k}{2}-1} e^{\frac{-y}{2}}$
- Mean of $Y=E\left[\|x\|^{2}\right]=k$ \qquad
- Var of $Y=\operatorname{VAR}\left(\|x\|^{2}\right)=2 k$

Chi- distribution of $\|x\|$

- Let $\mathrm{Z}=\|\mathrm{x}\|$
- Z said to chi-distributed
$f_{Z}(\mathrm{z})=\frac{1}{2^{\frac{k}{2}-1} \Gamma\left(\frac{k}{2}\right)} z^{k-1} e^{\frac{-z^{2}}{2}}$
- Mean of $\mathrm{z}=\mathrm{E}[\|\mathrm{x}\|]=\sqrt{2} \frac{\Gamma\left(\frac{k}{2}+1\right)}{\Gamma\left(\frac{k}{2}\right)}$
- Var of $Z=k-\mu^{2}$

Properties of $\|x\|$: concentration of $\|x\|$

- Setting $\mathrm{n}=\mathrm{k}+1$.
- $\mathrm{E}[\|\mathrm{x}\|]=\sqrt{n-1}\left[1-\frac{1}{4 n}\right]$
- $\operatorname{Var}(\|\mathrm{x}\|)=\frac{n-1}{2 n} \approx \frac{1}{2}$

k	n	$E[\\|x\\|]$	$\operatorname{Var}(\\|x\\|)$
10	11	3.09	0.4545
50	51	7.106	0.4902
100	101	10.035	0.4905
500	501	22.35	0.4995

Impact of high dimension in statistics: Linear discriminant analysis : Population based analysis

- Two Gaussian distribution $P_{1}(x)=\mathrm{N}\left(\mu_{1}, \Sigma\right)$ and $P_{7}(x)=\mathrm{N}\left(\mu_{7}, \Sigma\right), \mathrm{x} \in \mathrm{R}^{\mathrm{d}}$.

- Mixture: $\mathrm{P}(\mathrm{x})=p_{1} P_{1}(x)+p_{2} P_{2}(x), p_{1}>0$ and $p_{1}+p_{2}=1$.
- A sample is drawn from $\mathrm{P}(\mathrm{x})$ and need to identify which class it belongs to.

Standard Algorithm

- Compute $\mathrm{L}=\log \left(\frac{P_{2}(x)}{P_{1}(x)}\right)$
- $\mathrm{L}=\Psi(\mathrm{x})=\left\langle\mu_{2}-\mu_{1}, \Sigma^{-1}\left(\mathrm{x}-\frac{\mu_{2}+\mu_{1}}{2}\right)\right\rangle$
$>$ (20)
- Linear statistic.
- Optimum decision rule is based on thresholding $\Psi(\mathrm{x})$.
- When $\mu_{1}=1$ and $\mu_{2}=-1: T=0$ is a good threshold.

Error probability

- Set $p_{1}=p_{2}=1 / 2$
- $\operatorname{Error}(\Psi)=1 / 2\left[P_{1}\left[\Psi\left(\mathrm{x}^{\prime}\right) \leq 0\right]+P_{2}\left[\Psi\left(\mathrm{x}^{\prime \prime}\right)>0\right]\right]$
- x^{\prime} and x " are drawn from $P_{1}(x)$ and $P_{2}(x)$.
- $\operatorname{Error}(\Psi)=\frac{1}{\sqrt{2 \Pi}} \int_{-\infty}^{-\frac{r}{2}} e^{-\frac{t^{2}}{2}} \mathrm{dt}=\phi\left(-\frac{r}{2}\right)---------------------------------\ggg(21)$
- $r^{2}=\left(\mu_{1}-\mu_{2}\right) \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right):$ Mahalanobis Distance.

Sample Counterpart

- We do not know the conditional distributions.
- Given a set of labelled samples: $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ from $P_{1}(x),\left\{x_{n_{1}+1}, x_{n_{1}+2}, \ldots, x_{n_{1}+n_{2}}\right\}$ from $P_{2}(x)$
- Sample mean : $\widehat{\mu_{1}}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i}$ and $\widehat{\mu_{2}}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} x_{i+n_{1}}$
- Pooled sample covariance:
- $\widehat{\sum}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(x_{i}-\widehat{\mu_{1}}\right)\left(x_{i}-\mu_{1}\right)^{T}+\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(x_{i+n_{1}}-\widehat{\mu_{2}}\right)\left(x_{i+n_{1}}-\mu_{2}\right)^{T}$

Fisher's Linear discriminant function

- $\widehat{\Psi}(x)=\left\langle\widehat{\mu_{1}}-\widehat{\mu_{2}}, \widehat{\Sigma}^{-1}\left(x-\frac{\widehat{\mu_{1}}+\widehat{\mu_{2}}}{2}\right)\right\rangle$

- Assume $n_{i}>\mathrm{d}$ and $\widehat{\sum}$ is invertible.
- $\operatorname{Error}(\widehat{\Psi})=1 / 2\left[P_{1}\left[\widehat{\Psi}\left(\mathrm{x}^{\prime}\right) \leq 0\right]+P_{2}\left[\widehat{\Psi}\left(\mathrm{x}^{\prime \prime}\right)>0\right]\right]$
where x^{\prime} and $\mathrm{x}^{\prime \prime}$ are samples from $P_{1}(x)$ and $P_{2}(x)$.

Kolmogorov's analysis (1960's)

- Assume $\sum=I$ and $\widehat{\Psi}_{i d}(x)=\left\langle\widehat{\mu_{1}}-\widehat{\mu_{2}}, x-\frac{\widehat{\mu_{1}}+\widehat{\mu_{2}}}{2}\right\rangle$
- When $\left(n_{1}=n_{2}, \mathrm{~d}\right)$ and grow with out bound with ratios $\frac{d}{n}->\alpha>0$.
- Let $\left\|\widehat{\mu_{1}}-\widehat{\mu_{2}}\right\|$-> a constant $\Upsilon>0$.

Kolmogorov's Analysis Continued

- In this scaling:

- Since $\frac{r^{2}}{2 \sqrt{r^{2}+\alpha}}<\frac{r}{2}$, Error $\left(\widehat{\Psi}_{i d}\right)$ is larger than when $\alpha=0$.
- Clear demonstration of high- dimensional effect and resulting sub optimality.
- When $\frac{d}{n}=\alpha=0$, we get the classical asymptotic result.

Covariance estimation: Effect of high dimension

- Let $\left\{x_{1}, x_{2}, \ldots ., x_{n}\right\}$ be an i.i.d samples from a distribution with zero mean where $x_{i} \in \mathrm{R}^{\mathrm{d}}$.
- That is, we have n points chosen at random in R^{d}.
- Let $\mathrm{x}=\left\{x_{1}, x_{2}, \ldots ., x_{n}\right\} \in \mathrm{R}^{\mathrm{d} \times \mathrm{n}}$ - Data matrix.

Estimate Covariance matrix

- Sample Covariance : $\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}=\frac{1}{n} x x^{T} \in \mathrm{R}^{\mathrm{dxd}}$
- $\widehat{\Sigma}$ is unbiased : $\mathrm{E}(\widehat{\Sigma})=\Sigma$.
- $\widehat{\sum}->\sum$, the population covariance as $\mathrm{n}->\infty$ when d is fixed - classical convergence.

Measure of distance between $\widehat{\sum}$ and Σ

- Matrix norm - spectral norm, can be used $\left\|\widehat{\Sigma}-\sum\right\|_{2}=\sup _{\|u\|_{2}=1}\left\|\left(\widehat{\sum}-\sum\right) u\right\|_{2}------------->(25)$
- It can be proved : $\|\widehat{\Sigma}-\Sigma\|_{2}->0$ and $n->\infty$.
- That is, sample covariance is strongly consistent estimate of \sum is classical setting.

High dimensional effect

- Let n and d grow, but $\frac{d}{n}=\alpha \in(0,1)$.
- Estimate $\widehat{\sum}$ and compute its spectrum.
- Let $\lambda_{\max }(\widehat{\Sigma})=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}=\lambda_{\min }(\widehat{\Sigma}) \geq 0$.

Special case $\sum=1$

- In this special case when $\frac{d}{n}=\alpha \in(0,1)$ eigen values λ_{i} are all dispersed around 1 .

- Empirical distribution of λ 's for $\alpha=0.2$ and 0.5.

Marcenko - Pastur law (1967) : Impact of High dimension

- M-P law : They proved that the density of distribution of λ ' s is supported on the interval $\left[t_{\text {min }}\right.$ $\left.(\alpha), t_{\max }(\alpha)\right]$ where $t_{\text {min }}(\alpha)=(1-\sqrt{\alpha})^{2}$ and $t_{\text {max }}(\alpha)=(1+\sqrt{\alpha})^{2}$.
- This law allows (d, n) to increase but $\frac{d}{n}=\alpha \in(0,1)$ - has a non - classical flavor.

References

[1] M.J. Wainwright (2019) High- Dimensional Statistics: a non - asymptotic viewpoint, Cambridge University Press.
[2] R. Vershynin (2020) High- Dimensional Probability: An introduction with application in Data Science, Cambridge University Press.
[3] A. Blum, J. Hopcroft and R. Kannan (2020) Foundation of Data Science, Cambridge University Press.
[4] V.Shikhman and D. Mueller (2021) Mathematical Foundation of Big Data Analysis, Springer.
[5] J.Wang (2012) Geometric Structure of High- Dimensional Data and Dimensionality reduction, Springer.

