

Study of barotropic and internal tides : Application of ADCP data

International Training Centre for Operational Oceanography

Hyderabad

Jithin Abraham.K JRF, INCOIS

INTRODUCTION

Tidal currents

• Horizontal flow accompanied by rise and fall of tide

Why tidal currents are important ?

- They are in the order few cm/s in the open ocean, but they becomes strong in the coastal areas (>10 cm/s).
 - $\circ~$ Example: Magnitude of tidal currents reaches up to $\sim 32~{\rm cm/s}$ on the shelf off Mumbai (~19N).
 - \circ ~ It can reaches up to 1 m/s ~ in the nearshore regions
 - $\circ \quad \ \ {\rm Semidiurnal\ tides\ amplify\ over\ wide\ continental\ shelves}$
- They have impacts on
 - $\circ \quad Sediment \ transport$
 - \circ Acoustic propagation
 - \circ Vertical mixing
 - \circ ~ Enhancing the biological productivity on the continental shelf and slope.
- Even though they are periodic, magnitude of tidal currents varies both spatial and temporal scales in the due to the varying background conditions.(eg : bathymetry)

• Tidal currents in the ocean

---- Barotropic tidal currents

→ Internal tides (baroclinic tidal currents)

- Barotropic tidal currents
 - \rightarrow Depth independent
 - \rightarrow Generated by the direct astronomical forcing.
- Internal tide (Baroclinic tides)
 - \rightarrow Depth dependent currents.
 - \rightarrow They are internal waves at tidal frequencies.
 - → Generated by the interaction of barotropic tidal currents with the topographic features such as continental shelves, slopes and ridges in the stratified ocean

Analysis of tidal currents

First step is the calculation of barotropic and baroclinic currents. We deal with barotropic and internal tides separately.

- Barotropic currents.
 - \rightarrow Depth average of raw currents
- Baroclinic currents
 - \rightarrow Subtract depth averaged current from the raw current

Data requirement

- Both barotropic and baroclinic tidal currents are present in the ocean.
- The point measurements (at particular depth) are not sufficient to separate barotropic and baroclinic tidal currents.
- Current data at various vertical levels are required to calculate barotropic currents and baroclinic currents.
- ADCP data with maximum vertical coverage is required, especially in the coastal regions (shelf and slope)

Extraction of tidal currents : Harmonic analysis

• The basis of harmonic analysis is the assumption that the tidal variations can be represented by a finite number of harmonic terms .

$$u(t) = \sum_{n=1}^{k} a_n \cos(\omega_n t + \alpha_n)$$

a_n: amplitude
α_n: phase
k: considered harmonic components and
ω_n: corresponding angular frequencies.

- Observed tide is separated into basic harmonic constituents using least square fit and determine the amplitude and phase of each tidal constituents.
- Harmonic analysis tools : TASK 2000, T_tide, u_tide, etc

"One man's noise is another man's signal"

Major tidal constituents

• Major semi-diurnal components :

M2:12.42 hours (Principal lunar semidiurnal constituent) S2: 12.00 hours (Principal solar semidiurnal constituent)

• Major diurnal components :

K1:23.9344 hours (Lunar diurnal constituent) O1:25.819 hours (Lunar diurnal constituent)

- Form ratio = (K1 + O1) / (M2 + S2)
- $\begin{array}{ll} \bullet & \mathrm{F} < 0.25 \ \mathrm{semidiurnal} \\ 0.25 \leq \mathrm{F} < 1.5 & \mathrm{mixed} \ \mathrm{primarily} \ \mathrm{semidiurnal} \\ 1.5 \leq \mathrm{F} < 3 & \mathrm{mixed} \ \mathrm{primarily} \ \mathrm{diurnal} \\ \mathrm{F} > 3 & \mathrm{Diurnal} \end{array}$

Tidal ellipses and ellipse parameters

- Semi-major axis : 1
- Eccentricity
- Inclination
- Phase

- or axis : Maximum tidal current velocity
 - : Ratio of semi-major to semi-minor axis -ve value indicate ellipse is traversed in clockwise direction.
 - : Angle between east and semi-major axis
 - : Time of maximum velocity with respect to a chosen origin of time

Detailed document is available at Ellipse parameters conversion and vertical velocity profiles for tidal currents by Zhigang Xu, Bedford Institute of Oceanography

Harmonic analysis of current using TASK 2000

- Harmonic analysis is done by using *TASK2000* toolkit (fortran programs).
- Other tools are available (U_tide, T_tide etc)
- For the demonstration, we use TASK 2000 (http://noc.ac.uk/using-science/products/tidal-harmonic-analysis; http://www.psmsl.org/train_and_info/software/task2k.php).
- Harmonic analysis of currents is done separately for each velocity components (u and v). The results are shown in the form of tidal ellipses.

- Input data should be in standard TASK format and details should be provided in the control (*tura.ctl*) file.
- *tira.f* programme is used to extract the tidal signal from the input data.

- Harmonic analysis is carried out for barotropic and baroclinic currents computed separately.
- Output is stored in a file "output_filename". The output will be in the same format of input file but with tidal and residual velocity components at 9th and 10th column respectively.
- Amplitude and phase of tidal constituents will be saved in "tira.pri" file.
- These amplitude and phase of each tidal constituents are used to construct tidal ellipses.

Tools for harmonic analysis

• **T_tide tool** for matlab, freely available

Pawlowicz, R., B. Beardsley, and S. Lentz (2002), *Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Comput.* Geosci., 28, 929–937 (available at *https://www.eoas.ubc.ca/~rich/*)

Python version of T_tide is available at *https://ocefpaf.github.io/python4oceanographers/blog/2015/01/19/ttide_py/*

Observed tidal currents off the Indian Coasts

Tidal currents off the the Indian coasts : West coast of India

18°N

16°N -

14°N

12°N

68°E

Barotropic tidal currents

- Observations were made by ADCPs deployed on the shelf
- Semidiurnal variability occurs mainly in M2 and S2 and diurnal variability occurs mainly in K1 and O1
- Maximum cross-isobath tidal current is found at northern shelf locations (for instance, about 32 cm s/s off Mumbai) than those in south (about 10 cm /s) off Bhatkal, at 131N).
- Semidiurnal tidal currents found to be amplified due to the wide continental shelf in the north

Internal tides on the shelf off west coast of India

An increase in the amplitude of semidiurnal and diurnal internal tide is apparent when the stratification on the shelf increases from pre-monsoon to SW monsoon period.

150

Magnitude of Baroclinic ellipses is varies with depth

Fig. 6. Band-pass filtered (6-30 h) cross-isobath internal tidal currents during (a) March and (b) July. The observation period chosen for the analysis comprise the first spring and neap cycle of barotropic tidal current of the respective month. Variance of internal tide in March and July ($\langle u^2 \rangle + \langle v^2 \rangle$, where bracket indicates 1-month average) is also shown on the right panel.

Internal tides off jaigarh, west coast of India

- IT on the slope is found to be energetic, with a strong IT during March to mid-April (pre-monsoon period).
- IT is weak during the pre-monsoon and found to be strong in the southwest monsoon.
- Stratification is found to be weak on the shelf and strong on the slope during pre-monsoon.

(a) Time series of variance of barotropic tidal currents $(u^2 + v^2)$ for shelf and slope locations. (b) Time series of total IT variance, c) Time series of semidiurnal and diurnal IT variances on the slope location. d-e) Buoyancy frequency

Tidal currents off the east coast of India

- Tidal currents are mainly semi-diurnal in nature and M2 is the largest component.
- Barotropic tidal currents gradually increases from southern to northern part of the shelf.
- Tidal ellipses are oriented in a cross-isobath direction, except off Kakinada

Jithin et al., under review, CSR

Internal tides on the shelf

- Semidiurnal internal tides are stronger than barotropic tidal currents.
- Semi-diurnal internal tides are in the order of 8-15cm/s on the shelf.
- Amplitude of semidiurnal internal tides show seasonal variation and it is attributed to the change in stratification on the shelf.

(a) CD

20 40

60

100

120

140 -

Depth (m) 80 Jul-Aug Sep-Oct (b) RM

40

60

100

120

140

Nov-Dec Jan-Feb

Model validation of tidal currents using ADCP data

- Vertical profile of currents are required to calculate the barotropic tides.
- ADCP data are useful for the model validations of barotropic and internal tides

Comparison of barotropic tidal ellipses

Summary

- Analysis of ADCP data revealed the presence of strong barotropic and internal tides off the indian coasts.
- Tidal currents are mixed, dominated by semidiurnal along the west coast.
- Tidal currents are semidiurnal in nature along the east coast.
- Tidal currents amplified over wide continental shelf off west coast of India.
- Spatial and temporal variation of internal tide is observed.
- Temporal variability of internal tides are related to the changes in the vertical stratification.

Practical : Analysis of tidal currents

Data

Velocity data (u & v components) are given in a text file.

Method

Harmonic analysis using TASK 2000.

Objectives

- 1) Extract tidal current from the given time series data.
- 2) Plot tidal currents and residual current.
- 3) Find out the nature of tidal currents using form ratio ((K1 + O1)/(M2+S2)) and find out which component is dominant.
- 4) Construct tidal ellipse for major tidal components.

Thank You

Effect of declination will give rise to two constituents. Lunar declination takes place in 27.3216 solar days. i.e., 655.7 hours. This means an oscillation either side of the equator in 327.85 hours. This gives rise to 360.0/327.85 = 1.098

For M2, this will give two constituents,

28.984+1.098 =30.082 K2 lunar declinational semi-diurnal constituent

28.984 -1.098 =27.886

Declination of the moon takes place in 655.7 hours (27.32 days), which gives a speed number of 0.549. For getting the diurnal lunar tide, 14.492 + 0.549 = 15.041 K1 (half of M2 plus 0.549) 14.492 - 0.549 = 13.943 O1

N2, L2 – Modulate M2, conversion from the circular orbit to the elliptical orbit in the plane of the equator

Tidal Component	Period (solar hours)	Description	Nature
M2	12.42	Principal lunar	semi-diurnal
S2	12.00	Principal solar	semi-diurnal
N2	12.66	Larger lunar elliptic	semi-diurnal
K2	11.97	Luni-solar	semi-diurnal
K 1	23.93	Luni-solar diurnal	diurnal
O 1	25.82	Principal lunar diurnal	diurnal
P1	24.07	Principal solar diurnal	diurnal
Q 1	26.87	Larger lunar elliptic	diurnal
MF	327.90	Lunar fortnightly	Long term
MM	661.30	Lunar monthly	Long term
SSA	4383.00	solar semi annual	Long term
M4	6.21		Compound
MS4	6.10		Compound

Table: Primary Tidal Components

Raleigh criterion gives the minimum number of days of data required to separate any two constituents. It is given by 360/ (diff in angular speeds)

For instance, to separate M2 from S2, one

requires 360/(30.0-28.984). The unit is in hours ($354.330 \text{ hr}, \sim 14.7 \text{ day}$)

