Real time communication in ocean observation platform 4th July, 2016

M.Jeyamani INCOIS

Ocean Observations

Ocean observing systems collect ocean and weather data and provide data in real time to a variety of users such as forecasters, emergency and coastal managers researchers and educators and many more.

Observing systems consist of sensors that collect data, the platforms that host these sensors(satellite sand Ocean Buoys), and technology that sends the data to a data collection center, in real time.

Ocean Parameters

Temperature, Currents, Salinity, Sea Ice, Sea Level, Wind, Bio geo Chemistry

- (1) Satellite Based Observations: Satellites are being used to observe the ocean since 1970s. There are several satellites that carry specialized sensors for measuring ocean conditions over large areas of the ocean. Common products from satellites include sea surface temperature and chlorophyll.
- (2) In-situ Observations: Oceanographers have used in-situ platforms to observe the oceans for ages. It is to day important as complement to satellite based observations. When assimilated in models, in situ observations calibrate the models and serve as a reference point.

Real Time Communication

- In real time communication there is a direct path between the sender and the receiver although there are many several nodes in between but it goes from sender to receiver without any storage and delay. It belongs to peer to peer communication.
- Generally Real time communication (RTC) is called "LIVE COMMUNICATION".
- In the context of Global Observation System, there are two modes,
- Real time: Early Tsunami warning
- Near Real Time: Weather data

Ocean Parameters ,satellites and platforms

Parameter	Satellite Based	In-Situ	
Temperature	Infrared Radiometer, Microwave radiometer (SST)	Ships of Opportunity, Drifting Buoys, Argo Profiling Floats, Moored Buoys, Research vessels, Ship AWS,XBT	
Currents	Altimeter Altimeter+ Scatterometers(Sea Surface currents and winds)	Argo(Deep Ocean Currents), Drifting Buoys, Gliders(surface to 1000m)	
Salinity	Microwave Radiometer	Profiling Floats, Moored Buoys	
Sea Ice	Microwave Radiometers(Concentration, Drift), Microwave Scatterometers(extent, edge, type) Infrared Sensors(extent)	Ice Buoys(Temperature, mass, drift)	
Sea Level	Altimeters	Tide Gauges	
Wind	Microwave Radiometers, Microwave Scatterometers, SAR, Altimeters	Moored Buoy, Ship AWS	
Bio Geo Chemistry	Spectrometers	Research vessels, Gliders	

Satellite Based Observation

Instrument Type	Ocean Parameter measured	Satelltes
Spectrometer	Chlorophyll, Organic and mineral content, SST, Sea Ice Cover	Aqua(USA) Envisat(Europe)
Infrared Radiometer	SST	NOAA,Metop ,Envisat, Aqua,TERRA, Suami-NPP, Meteosat, DMSP,INSAT,
Microwave Radiometer	Atmospheric water vapor content, Atmospheric water liquid content(Cloud), Rain Rates, Sea Ice concentration type, extent, SST, Salinity	DMSP,TRMM, Aqua + JAXA developed by Japan, Envisat, Jason-1,2,3
Altimeter	Sea Surface Height, Ocean Surface wind speed, Wave Height, Sea Ice	Jason-1,2,3 Envisat,
Scattero meter	Wind speed and Heading(10m above ocean surface), Rain, Sea Ice Concentration	Metop
Synthetic Aperture Radar(SAR)	Wind, Surface Wave Field, Sea Ice Monitoring	Radasat-1,2, Envisat

IN-SITU Platforms

Drifting buoy(SST, Pressure)

Communication : Argos, INSAT and other regional

Wave raider buoy(Wave Height, direction)

Moored buoy(Met sensors, SST, Wave

height) DART EARLY WARNING BUOY 3 2 Up to 5,000m Not to scale

Tsunami Buoy (Wave

Tide Gauge(Ship AWS Tide Heiht)

Communication : INSAT

Communication : INMARSAT

Met sensors, Long/Short wave radiation, SST, Turbidity

Coastal Radar(Wave height, Direction)

Glider(CTD,..

Communication Network

- Established in 2005, GEO (Global Earth Observation) is a voluntary partnership of governments and organizations that co ordinate take decision for comprehensive and sustained Earth observations and information." GEO Member governments include 102 nations and the European Commission, and 95 Participating Organizations comprised of international bodies with a mandate in Earth observations.
- Together, the GEO community is creating a Global Earth Observation System of Systems (GEOSS) that will link Earth observation resources world-wide across for different users.
- GEOSS information exchange has been principally based on the Internet, the Global Telecommunications Network (GTS) component of the WMO Information System (WIS) and satellite based distribution systems such as GEONET Cast. A key counterpart will be the ITU.

GOOS(under GEOSS) is the <u>Global Ocean</u> Observing System. **GOOS** is designed and being implemented to embrace the oceans as a single entity, to provide a global view of the ocean system. It is a permanent global system for observations, modeling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the oceans, including living resources; continuous forecasts of the future conditions of the sea for as far ahead as possible, and the basis for forecasts of climate change.

Global Telecommunication System (GTS)

The Global Telecommunication System (GTS) is defined as: "The co-ordinated global system of telecommunication facilities and arrangements for the rapid collection, exchange and distribution of observations and processed information within the framework of the WorldWeather Watch."

The GTS is an integrated network of surface-based and satellite-based telecommunication links of point-to-point circuits, and multi-point circuits, interconnecting meteorological telecommunication centers operated by countries for round-the-clock reliable and near-realtime collection and distribution of all meteorological and related data, forecasts and alerts. This secured communication network enables real-time exchange of information, critical for forecasting and warning of hydro meteorological hazards.

GeonetCast

Different mode of Communication

Satellite based Data Collection System

- **One Way** : (1)ARGOS data collection and Location System-Polar satellite system
- (2) Data Collection System- Geo Synchronous Satellite System(GOES(USA), Meteosat (Europe), INSAT(India), Himawari (Japan) COMS(Korea), FY(China),...

Two Way: ARGOS data Collection and Location System (ARGOS 3),

Communication Satellites: LEO(IRIDIUM), Geo Stationary (INMARSAT, INSAT MSS,....)

INMARSAT Coverage

INSAT Coverage

INDIAN OCEAN REGION

ARGOS-3

IRIDIUM Coverage

ARGOS

The Argos satellite-based location and data collection system enables scientists to gather information on any "object" equipped with an appropriate transmitter, anywhere in the world. ARGOS in not an Acronym, rather, it is chosen name for the system

Argos transmitters' messages are recorded by a constellation of satellites carrying Argos instruments, and then relayed to dedicated processing canters. This system, has been operational since 1978, and was initiated jointly by France and the United States. The system is operated worldwide by CLS, a subsidiary of CNES, and the French institute of marine research and exploration

ARGOS

- ARGOS(NOAA, Metop, SARAL, ADEOS)
- There are 8 ARGOS Operational
- 4XARGOS 2
- 4X ARGOS 3 (Downlink is 'ON' only in Two) (Metop B, SARAL, Downlink at 401.65MHz)

GPS free positioning system Position accuracy up to 250 m

- •For a volume of data per profile < 0.5 KB: Argos-2
- •For a volume of data per profile from 0.5 KB to 2.5KB Argos-3 low data rate mode
- \bullet For a volume of data per profile > 2.5 Kbytes , Argos-3 high data rate mode.

Satellite Transponder

ITU Designation			Military Radar band Designation	
ITU Band	Designatio n	Frequency	Designation	Frequency
3	ULF	300Hz-3KHz	HF	3-30MHz
4	VLF	3-30KHz	VHF	30-300MHz
5	LF	30-300KHz	L	1-2GHz
6	MF	300-3000KHz	S	2-4GHz
7	HF	3-30MHz	С	4-8GHz
8	VHF	30-300MHz	Х	8-12GHZ
9	UHF	300-3000MHz	Ku	12-18GHz
10	SHF	3-30GHz	K	18-27GHz
11	EHF	30-300GHz	Ka	27-40GHz
12		300-3000GHz	mm	40-300GHz
13		3-30THz	V	40-75THz
14		30-300THz	W	75-110THz
15		300-3000THz	mm	110-300THz

Communication satellites Link Parameters

Channel capacity Theorem

$$\left(\frac{S}{N}\right) = EIRP + \frac{G}{T} - Pathloss$$

Channel Capacity,
$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

$$\left(\frac{E_b}{kT}\right)\left(\frac{R}{B}\right) = EIRP + \frac{G}{T} - Pathloss$$
$$\left(\frac{E_b}{N_0}\right) = EIRP + \frac{G}{T} - pathloss - \frac{R}{B}$$

Modulation

Modulation: In a Radio communication, the digital data is transmitted on a sinusoidal carrier by varying one or more parameters of the carrier signal such as, amplitude, frequency or phase,

 $v(t) = V_0 Sin(2fft + W)$

amplitude

frequency

Phase

Phase Shift Keying

• One phase change encodes a 0 while another phase change encodes a 1 (a form of phase modulation)

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$

BOISE STATE EE 541/451 Fall 2006

DBPSK, QPSK

- Differential BPSK
 - 0 = same phase as last signal element
 - $-1 = 180^{\circ}$ shift from last signal element

• Four Level: QPSK $s(t) = \begin{cases}
A \cos\left(2\pi t + \frac{\pi}{4}\right) & 11 \\
A \cos\left(2\pi t + \frac{3\pi}{4}\right) & 01 \\
A \cos\left(2\pi t + \frac{3\pi}{4}\right) & 00 \\
A \cos\left(2\pi t - \frac{\pi}{4}\right) & 00 \\
A \cos\left(2\pi t - \frac{\pi}{4}\right) & 10
\end{cases}$

Metrics for Digital Modulation

- Power Efficiency
 - Ability of a modulation technique to preserve the fidelity of the digital message at low power levels
 - Designer can increase noise immunity by increasing signal power
 - Power efficiency is a measure of how much signal power should be increased to achieve a particular BER for a given modulation scheme
 - Signal energy per bit / noise power spectral density: E_b / N₀

Bandwidth Efficiency

- Ability to accomodate data within a limited bandwidth
- Tradeoff between data rate and pulse width
- Thruput data rate per hertz: R/B bps per Hz
- Shannon Limit: Channel capacity / bandwidth
 - $C/B = log_2(1 + S/N)$

Channel Coding

Error control coding aims at developing methods for coding to check the correctness of the bit stream transmitted. The bit stream representation of a symbol is called the codeword of that symbol: Linear Code Convolution Code

No of errors that could be corrected, $t \leq \frac{1}{2}(d_{\min}-1)$

d_{min}= Hamming distance, Ex Hamming distance between the code word 101101, and 001100: is 2; No of positions the code word differ

Forward Error Correcting Code(FEC): Convolution Code

Convolutional Codes

 Operates bit-by-bit on incoming data; similar to a stream cipher

R=1/2 K=3 Convolutional Encoder

Comparison of Modulation Scheme

Tsunami Detection System

- Bottom Pressure Recorder (BPR) measures small changes in pressure at the seafloor.
- Data sent acoustically to surface buoy, then via satellite to the Warning Centers.
- <u>Normal transmissions</u>: Hourly reporting of 15 minute data to confirm system readiness.
- <u>Two Event Modes</u>:
 - <u>Automatic</u>: Triggered by seismic or tsunami wave
 - <u>Request</u>: Warning Center triggers data stream

Acoustic Modem- Tsunami Buoy

Acoustic Modem is relatively slow 1500m/s
There are other conditions such as signal absorption(which increases with frequency) geometric spreading loss, shadow zone, multipath, ambient noise
Most commonly MFSK is used, PSK also is used but prone to error Packetized, convolution coded and error check bit are introduced,
Modem available in different ranges, Low frequency: 9-14, Mid frequency 16-21, and high frequency 25-30KHz. Half duplex, ARQ,
Used for AUV,ROV, under water sensor network for sea floor observation

Typical Specifications::Tsunami
Mid frequency: 16-21 KHz
Modulation: MFSK
Data Rate: Transmit mode Power: 15W
Listen mode : 15-230mW
Depth: 6000m
Material : titanium
Tsunami Buoy Specifications

Mandatory Characteristic	Specification
Measurement sensitivity	Less than 1 millimeter in 6,000 meters
Sampling interval, internal record	15 seconds
Sampling interval, event reports	15 and 60 seconds
Sampling interval, tidal reports	15 minutes
Two-way end-to-end communications (two channels)	On demand, tsunami warning center trigger
Tsunami data report trigger	Automatically by tsunami detection algorithm
Data flow, BPR to TWC	Less than three minutes after triggered event
Desired Characteristic	Specification
Reliability and data return ratio	Greater than 80 percent (STB 98 percent)
Maximum/minimum deployment depth	6,000 meters/1,500 meters
Maximum deployment conditions	Sea State 4
Theoretical battery life, buoy	Greater than two years
Theoretical battery life, tsunameter	Greater than four years
Maximum status report interval	Less than 6 hours

Iridium

- Constellation of 66 satellites in a Near Polar Low Earth (780 km) Orbit (LEO), in 11 satellite in 6 orbital plane
- Each satellite has 48 spot beams Beam overlap,
- Each foot print approximately 4800Kmin diameter.
- On-orbit spares.
- Requires only one gateway.
- Use L band for Tx/Rx for the subscriber unit, K band for inter satellite link and gate way
- Satellite Access Scheme FDMA/TDMA
- Voice at 4.8Kbps and data at 2400kbps , duplex
- Minimal set-up time, low latency, no echo

The area which a base station covers is called a cell and the place where the base station and antennas are located is called a cell site.

A cell is an area which is covered by each base station. This area is divided into regular shaped cells, which can be hexagonal, square, circular or some other regular shapes. Though the most commonly used are the hexagonal cells. It looks like a cell in a honeycomb as shown in the diagram below. Cell sizes can range from 1Km to 50 km in radius.

SIM Subscriber Identity Module ME Mobile Equipment BTS Base Transceiver Station BSC Base Station Controller HLR Home Location Register VLR Visitor Location Register

MSC Mobile services Switching Center EIR Equipment Identity Register AuC Authentication Center

A RUDICS Data Call from a remote application (ISU) to the central Host Application

Sequence of Events:

- 1. Mobile application places call to a custom RUDICS Server Number
- 2. Call request is routed over the constellation for user authentication and call set-up.
- 3. Switch connects to RUDICS Server, secondary authentication conducted
- 4. RUDICS Server terminates call to pre-configured IP Address
- End-to-End IP connection established, over the constellation, between the Host Application and Mobile Application

Router-based unrestricted digital internetworking connectivity solution (RUDICS) is an enhanced gateway termination and origination capability for circuit switched data calls across the Iridium satellite network

INMARSAT-Tsunami Buoy

- INMARSAT terminal operates at a low data rate of 600 bps with high power consumption of 2W in standby mode and 23W in transmit mode. Due to the inherent disadvantages of high power consumption (i) the battery on the buoys need frequent replacements (ii) high data latency and data gaps while operating in tsunami event mode.(iii) low data rate
- INMARSAT communication is approved by Indian Government. Important factors that decide the most appropriate satellite communication link to be used for buoy systems are: (a) power consumption of the transceiver electronics, (b) high data rate and (c) low latency.
- IRIDIUM communication is used in more than 90 % of the tsunami buoys operating globally. IRIDIUM satellite terminal supports 2400bps with very low power consumption of 250mW in standby mode and around 2.5W in transmit mode.

Moored Buoy

• Moored buoys gather weather and ocean data from sensors mounted on the buoy and attached to its mooring system. he observations from buoys transmitted through satellite to the user through INMARSAT/INSAT Geo system or similar system

Tide Gauge

INSAT System for data collection

- Data Collection Through INSAT
- INSAT 3D: DRT transponder of INSAT 3D
- Transponder: Receive: 402.75+/-100KHz
- EIRP: 18dBW
- MSS Transponder of INSAT 3C: Supports one way & Two Way
- Receive: 2670-2690MHz
- Transmit: 2500-2520MHz
- EIRP: 37dBW

Tide Gauge Transmission Through INSAT

INSAT Transmitter

Transmit Power : 10W Antenna: single Patch antenna Transmission Scheme : TDMA Timing : Derived Through GPS Frame : 3 Minutes Slot size: 1.5 second

Tide Gauge Data transmission through INSAT

Communication through INSAT DRT Transponder

Parameter	Uplink
Up link frequency	402.75 Mhz
Max. Slant range	41130 K
Uplink path loss	177 dB
Tx Power (5W)	10 DBw
Net antenna gain (including cable loss)	-3 dBi
Tx EIR	7 dBw
Satellite G/T	-19.0 dB/K
Uplink C/No.	36.6dBHz

Parameter	Downlink
Down link freq	4505 Mhz
Down link path loss	197.0 db
Satellite EIRP	-1 DBW
Link Margin	2.5 dB
G/T of earth station (3m)	17 dB/K
Down link C/No	47.6 dBHz
Total C / No	39.5 dBHz
Required C/No	33dBHz

Suomi NPP Down link

Transmit EIRP	12.79dBW
Frequency	7812MHz
Information Rate	15.0Mbps
Modulation	QPSK
Channel Coding	Convolution Coding,
	K=7,1/2 rate
Down link Path loss	179.5dB
G/T	22.2dB/K
Downlink C/No	83.9
C/N	12.14dB
C/N required Clear Sky	6.90dB
Margin	5.2dB

