Fish life-cycle and Oceanographic Processes

Sourav Maity, PhD souravm@incois.gov.in

Fishing Heritage - Fishermen

Bubbles breaking on Surface

Muddy and oily water and calm Sea

Reflection in the Night

Kaladu (a kind of smell)

Fish Availability Type Quantity

Identification Keys

- Oceanic Fronts
- Meandering Patterns
- Eddies
- □ Rings
- Mushroom shaped features
- Tongue shaped features
- Coastal Upwelling
- Shelf Break fronts
- Plume fronts
- Diverging fronts
- Converging fronts

Fish Finding - The Remote Sensing Approach

Sea Surface Temperature

Chlorophyll

తీరము నుంచి	దళలో
Rambilli राश्चिल्ली రాంచిల్లి	ఆగ్నేయ
Jagannadhapuran जगन्नाधपुरम జగన్నాధపురం	ి ఆగ్నేయ
Pudimadaka ಗ್ವತಿಗೆತಕಾ ಪುಜಿಮೆಜಿತ	ఆగ్నేయ
Bavanapadu बवानापाडु හాठనపాడు	ಆಗ್ನೆಯ
Visakhapatnam विशाखापट्नम ವಿశాఖపట్నం	ఆగ్నేయ
Allivalasa अल्लिवालसा ভවুठలన	ఆగ్నేయ
Revu Polavaram रेवुपोलावरम ਰేవు హిలవరం	ఆగ్నేయ
Maruvada সঙ্বায় শুক্রার	ಆಗ್ನೆಯ
Kuppili কুম্দিনী కుప్పిలి	ఆగ్నేయ
Palmanpeta पल्मानपेटा పల్మంపేట	ఆగ్నేయ
Srikurmam श्रीकुमारम ईइण्ठू०	ఆగ్నేయ
Chintapalli चिंतापल्ली చింతపల్లి	ఆగ్నేయ

Satellite Data Products

Key Indicators

PFZ Advisories

(යිලිනි)	నుంచి-వరకు	నుంచి-వరకు	(డియమ్యస్)	(డేయమ్యస్)
104	104-109	2509-2514	17 14 13 ი ჭთ	83 53 20 తూర్పు
106	41-46	305-310	18 19 54 ი ტძი	84 35 32 తూర్పు
100	98-103	2437-2442	17 19 39 ი ჭი	83 55 0 తూర్పు
103	26-31	126-131	18 31 59 සජු රං	84 37 21 తూర్పు
110	68-73	2064-2069	17 26 59 ი ჭძი	83 54 53 తూర్పు
98	107-112	2163-2168	17 59 58 ი ჭძი	84 44 12 తూర్పు
105	113-118	2596-2601	17 7 38 ఉత్తరం	83 49 59 తూర్పు
95	34-39	52-57	18 27 40 იტიი	84 36 9 తూర్పు
98	92-97	2111-2116	18 3 3 2 იტ ძი	84 41 47 చూర్పు
105	123-128	2595-2600	16 58 9 იჟ ძი	83 40 53 తూర్పు
101	69-74	1454-1459	18 8 2 1 යෙදු රං	84 38 54 తూర్పు
97	120-125	2171-2176	17 56 43 ი ჟთ	84 46 44 తూర్పు

उपबह से प्राप्त सुचना अनुसार 8 जुलाइ 2018 तक मत्स्य भंडार की उपलब्धता ఉపగ్రహ సమాచారము ద్వార చేపలు 8 జులై 2018 వరకు లబించుటకు అవకాశము కలద

(మీటరలో)

SATELLITE DATA SHOWS LIKELY AVAILABILITY OF FISH STOCK TILL 8 JUL 2018

उत्तर आंध प्रदेश යජුර පංසු

Potential Fishing Zone

NORTH ANDHRA PRADESH

ದು ರಮು

(కిలో మీటర్)

కోణము

INCOIS ctor, Indian National Centre for

Advisory validity: One day from 07/07/2018

at) Fax No: 040-238950

రేఖాంశము

Data updated on: 07-07-2018 15:53:33

ಆಕ್ಷಂಕಮು

Real-time advisories to prediction

Independent observations

Performance test (Validation & fine-tuning)

Prediction (Species level)

Distribution of Hilsa shad

Found in rivers and estuaries in India, Pakistan, Bangladesh, Burma and the Persian Gulf area where it can be found in the Tigris and Euphrates rivers in and around Iran and Iraq.

India: Hugli (tributary of Ganges), Mahanadi, Chilka, Godavari, Tapti and Narmada.

Total yearly production: 5 million tons.

50%-60% are caught by Bangladesh, 15%-20% are caught by India, Pakistan and rest 5%-10% are caught by Malaysia, Thailand, China, Vietnam and Srilanka.

The fish contributes about 12% of the total fish production and about 1% of GDP in Bangladesh.

General Characteristics of Hilsa

Tenualosa ilisha, popularly known as **Hilsa shad**, is a pelagic species in the <u>Clupeidae</u> family

Well distributed in the coastal shelf, estuaries, brackish water lakes and freshwater rivers in Indonesia, Java, Sumatra, Myanmar, Bangladesh, India, Pakistan, Kuwait, Iraq and Iran. Breeding/Migration highly dependent on **fresh water discharge** and **phytoplankton** (Diatom) availability. Ganges, Brahmaputra and Meghna reverine system is one of the largest drainage of Himalaya is used by the fish for breeding.

Anadromous in nature, Breeding highly dependent on South-west monsoon and Primary breeding period June – October

Hilsa sanctuaries in Indian Sndarbans (demarcation may not be accurate)

Salinity adaptations

Drink large quantities of water Secrete salt through special cells Small volume of highly concentrated urine

Do not drink Cells absorb salt Large volume of dilute urine

Copyright © 2004 Pearson Prentice Hall, Inc.

Stenothermal, Eurythermal, Stenohaline, Euryhaline

HILSA FISHERY STATUS IN WEST BENGAL

 \succ Within the time span of eight years the condition factor has decreased $\sim 45\%$, i.e. the health condition of the fish is deteriorating very fast in its natural habitat.

 \succ b value represents the nature of growth of a fish. A value of 3.0 refers an allometric growth. b value of Hilsa reduced $\sim 39\%$

(Data Source: West Bengal Fisheries Department, Govt. of W.B., ing this time span.

Figure 1. Annual hilsa catch in Bangladesh from 1983 to 2018 (left); and few hilsa fishes at a landing center

Source: Das et al. 2018

www.nature.com/scientificreports

Hossain et al 2020 SCIENTIFIC REPORTS

natureresearch

HILSA DISTRIBUTION

Catch Per Unit Effort (CPUE) Map of Winter and Summer Phase

HILSA DISTRIBUTION

Catch Per Unit Effort (CPUE) map of Monsoon and Post Monsoon Phase

89°0'E Tajikistan Afghanistan China Pakistan Baufan 22°0'N Fhail Indones BANGLA DESH 21°30'N LEGEND 21°0'N **Post-Monsson** Hisla Catch (in kg.) 00.00 - 80.00 0 80.01 - 250.00 < 250.00

89°0'E

migrate towards river. ✤ As the high resolution coastal modeled as unavailable, prediction of the

Collaborator: Jadavpur University

monsoon is very much essential.

- salinity data from satellite as well salinity is
- salinity depletion leading Hilsa to
- As the monsoon intensifies from June-September, it leads to the

Salinity vs Hilsa catch

Effect of River Discharge on Hilsa Catch

Collaborator: Jadavpur University

Daily rainfall vs Hilsa catch

Collaborator: Jadavpur University

Collaborator: Jadavpur University

Nutrients in BoB

Figure 4. Spatial distribution of nutrient in the Bay of Bengal.

natureresearch

Hossain et al 2020 SCIENTIFIC REPORTS

www.nature.com/scientificreports

Phytoplankton

Figure 7. Phytoplankton abundance and hilsa yields (%) in the Ganges-Brahmaputra-Meghna (GBM) delta of the northern Bay of Bengal.

During monsoon higher nutrients but phytoplankton biomass. lower Light limitation due to cloud cover

- High nutrient load during monsoon leads to the high phytoplankton biomass during post-monsoon.
- High silicate value during enhances the growth of diatoms as the diatoms are having siliceous structure.

monsoon

www.nature.com/scientificreports

Hossain et al 2020 SCIENTIFIC REPORTS

natureresearch

Gut content and Phytoplankton

Collaborator: Jadavpur University

•During monsoon brooder fishes gradually decreasing Phytoplankton intake. However, organic debris intake

•October onwards Diatom intake sand/organic and

> Percentage of occurrence of Diatom increasing form monsoon to postmonsoon. Species diversity of Diatom also increasing during

Wind

0 1 2 3 4 5 6 7 8 9 101112131415161

Cyclone induced increased fish catch

Collaborator: Jadavpur University

Phailin: October 2013

Figure 1. Annual hilsa catch in Bangladesh from 1983 to 2018 (left); and few hilsa fishes at a landing center

Figure 3. Monthly and seasonal variations of net primary productivity in the Bay of Bengal.

Figure 8. Spatial distribution of hilsa in the Bay of Bengal region since 1974.

www.nature.com/scientificreports

Hossain et al 2020 SCIENTIFIC REPORTS

natureresearch

www.nature.com/scientificreports	
Hossain et al 2020	
SCIENTIFIC	
REPORTS	V in The
	All States And Aller
natureresearch	Spawning: Oct-Nov
A STATE OF A	Juvenile: Feb-Mar
	GANGES DELTA
	Partie MA
1 61	Mature: Jun-Jul
A	
1	191 D
	BAY OF BENGAL
Hilsa shad (Tenualosa ilisha)	
Genetically similar population in B	angladesh, India and Myanmar (Salini et al. 2004)
 Spawning migration to freshwater, Spawn in river/estuary during Octo 	not necessarily to natal region (Milton and Chenery 2003)
Spent migration to sea in Novemb	er-December (Pillay et al. 1963; Hossain et al. 2014b)
 Fry-juvenile nursing in river/estuar Juvenile starts seaward micration 	y in December-March (Hossain et al. 2014c) in April (Haldar and Islam 2008)
 Adult/mature at sea in June-July, t 	hen start upstream spawning migration
Inadequate data on offshore and h	high sea migration range, abundance and fishing potential
100 0 100 Kilometers	

Figure 9. Conceptual map of hilsa habitats, their migration pattern and life cycle in the northern Bay of Bengal.

Hilsa shad predictive capabilities

Challenges

- •High commercial value & over harvested
- •Highly migratory & anadromous species
- •Mostly targeted during monsoon, when the stock is near to coast/estuary for breeding
- •High inter-annual variability
- •Prediction need to be developed in quantitative approach and should be sustainable in nature
- •Service on Maximum Sustainable Yield (MSY) & efforts are essential for policy makers

Experimental Hilsa shad advisories

Approach

- Small-pelagic fish habitat-suitability modelling
- Model: Generalized Additive Model (GAM)
- Parameters Used:

ROMS simulated surface (i) sea temperature,

chlorophyll concentration, dissolved oxygen &

salinity (ii) Remotely sensed rainfall (iii) Fish catch as response variable

•Best fit model :

g(CPUE)=a+s(SST)+s(Rain)+s(Oxygen)+s(Chl)+s (salinity)

where g is the link function, a is a constant, s (.) is a spline smoothing function of the

Thanks for kind

attention...

Photo credit....

Sachinandan Dutta

ALC DE PROVINCE

Acknowledgement....

^{क्रा}छाडितीसा

Jadaupur University

Fishermen Associations, WB

