Digital Cartogr4aphy

Indian Institute of Surveying & Mapping Hyderabad

What do we mean by Cartography?

It is the Art, Science and Technology of representing a geographical area in graphical form.

Basically it is a means of communication

Necessity of Cartography

- Representing a geographical area in a mathematically accurate form through written communication is a gigantic task.
- It may take thousand of words and still may not be convincing.
- Cartography represents the area through signs and symbols in a comprehensive way.

Challenges in Cartography and their Solutions

- 1. How to represent the vast area of earth on a tiny paper?
- By chosing a proper scale.
- 2. How to represent the spherical surface of the earth on plane paper so that distortions and tearing may be minimum?
- By technique called projection.

Challenges in Cartography and their Solutions

3. How to depict accurately details in their correct relative position?

By chosing a co ordinate system

- 4. How to depict large number of details without confusion
- By proper symbolization

History of Cartography

- Oldest known map discovered in Babylone.Estimated to be 4500 years old.
- Greek cartographer Ptolemy(90-168 A.D.) made the first map of the world .
- The science of Cartography suffered a setback during medieval times.
- It started recovering after 1500 A.D.

History of Cartography

- The period after 1800 A.D. marks the setting up of Cartography on scientific footing.
- The period of colonial expansion witnessed an ever increasing demand for accurate maps and charts.
- Thus began the era of Modern Cartography.

Process of Map Making Conventional Techniques

- Collection of raw materials.
- Mosaicing in correct geographical position
- Reduction/ Enlargement to required scale
- Preparation of positives or negatives

Classification of Data

- Natural or Physical Features
- Man-made or cultural features

Further Classification

- Hydrography
- Roads and Railways
- Buildings and other constructions
- Vegetations
- Boundaries
- Relief
- Geographical Names
- Utilities

Digital Cartography

• It is the Computer assisted cartography.

Digital Map

It is an organised set of cartgraphic data stored on computer readable media and representing a map image

Digital Map

 In simple terms, it is computer compatible formof map to be displayed, manipulated, analysed and archived in computer.

Information is stored in digital (binary or other system) form.

Contents of a Digital map

- It Presents the Information available on the surface of the Earth in the form of Geographical Features.
- Features:
 - i. Natural
 - ii. Cultural

What are the Map Contents?

- Features are represented by;
 - i. Point
 - ii. Line
 - iii. Area
 - iv. Text
- Two types of data are associated with these Features;
 - i. Positional / Spatial data
 - ii. Attribute / Non spatial data

What is Positional Data

 It answers the question 'where it is ' Means it indicates the location of a feature
How the location defined on the spherical surface of the Earth?

Defines by two types of geographic coordinate systems on a chosen reference surface

- i. Longitude, Latitude & Height
- ii. Geocentric X,Y,Z

How the position is defined in 2D Paper Map

 Defined in a Cartesian X,Y Coordinates with reference to a scaled Map frame work

Where do we get this X,Y

- The spherical surface projected on a two dimensional surface in a suitable manner to transform the geographic coordinate to Cartesian or rectangular X,Y coordinate
- Process of transformation is called Map Projection & X, Y is called Projected coordinate.

How the features are defined?

- By 2D geometry Point, Line or Area.
- Geometry depends on the theme of representation and scale of Map.

How the elevation is represented?

By Linear contour/TIN/DEM/Hillshade

What is Attribute data

It answers the question 'what it is'

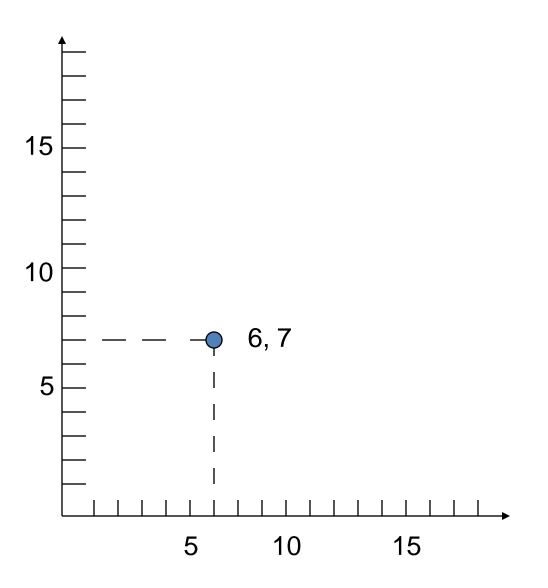
Means it indicate the characteristic or class of a feature.

How this data is presented in Paper Map?

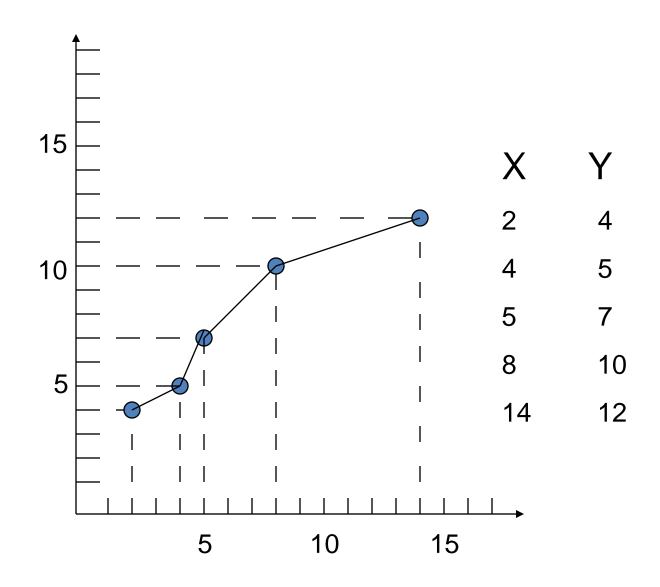
Presented by Colour, Symbols or Description (Text) to a feature. A separate attribute table may also be made.

How the Information is represented in Digital Map?

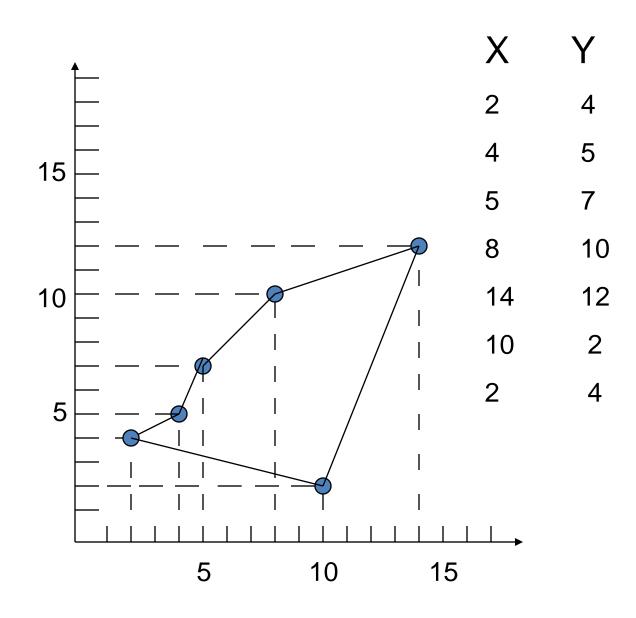
Represented in two modes or Systems

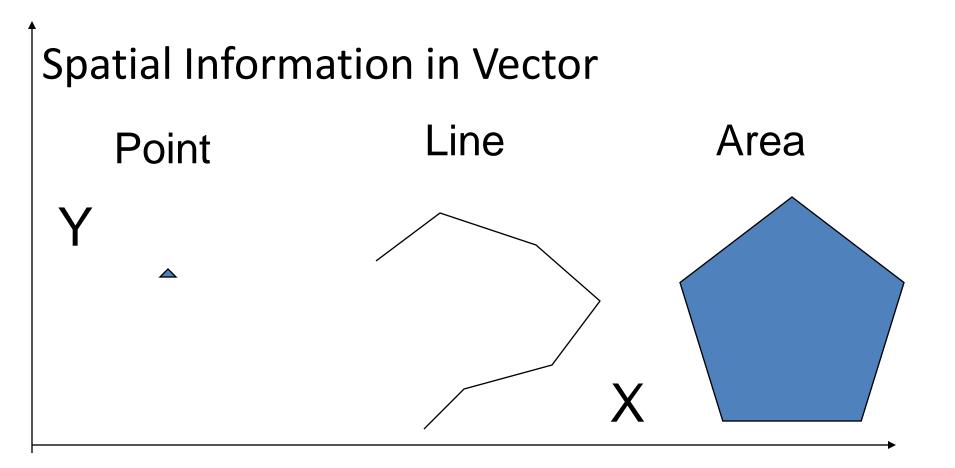

i. Vector / Point mode

ii. Raster / Cell mode


What is vector?

- It is the representation of features using points and their x, y or x, y, z coordinates in a pre-defined Cartesian coordinate system
- Coordinates may be projected or geographic
- For point a single pair of x, y,
- For line a sequence x, y pairs
- For area sequence of pairs of coordinates closing at the first point and start & end point recorded once


DIGITAL REPRESENTATION OF A POINT



DIGITAL REPRESENTATION OF A LINE

DIGITAL REPRESENTATION OF AN AREA

How attribute is represented

• By a code to the geometry or data base with field values attached to it.

What is Raster?

- It is the representation of features using cells or pixels (picture elements).
- The whole area is divided in to matrix of cells (a Grid) of definite cell size & no. of Row & Column.
- Cell size is called Spatial Resolution
- Position is defined by Column & Row address
- Attribute is defined by a value to the cell. That is the class value of the cell or Digital Number (DN)


How it is related with the position on the Earth surface?

- A relationship between raster position (Column & Row address) and with the corresponding geographic or projected coordinates.
- This process is called geo-referencing.

How the geometry is represented?

- As such there is no concept of Point, Line or Area as each pixel is independent of its neighborhood and presented as an area.
 However interpreted as
- A point by single pixel with out common value in neighborhood
- A line by sequence similar cell in a linear alignment
- An area by a block similar cell

A raster representation

- **Example of Raster data**
- Scanned output, Satellite Imageries,
- Raster DEM, Classified Image

Comparison

DATA	ANALOGUE	DIGITAL MAP	
		VECTOR	RASTER
Positional	Projected Cartesian X,Y coordinates with reference to a scaled map frame work.	Cartesian X,Y (projected or Geographic) in 2D and X,Y,Z in 3D.	Row, Column Position of a cell.
Attribute	Colour, Symbology and Text Description	Code, Attribute values attached to the vector	Cell value

How a Digital map is generated?

It can be generated at any stages of map making process.

OR

• The already processed and Map presented in analogue form can be converted to Digital form

Digital Cartography: process of Map making

Three stages:

- **1.** Data acquisition :
- From Satellite Imageries
- From aerial photographs
- By GPS
- BY GPR
- By Total Stations
- By Palm Top equipped with GPS
- By LIDAR
- From existing Cartographic documents

- Data Manipulation : Includes georeferencing , vectorization and proper symbolization of field data
- 3. Final printing through digital technology

Stages of map making Contd.....

Data Stage as per DMS Confirming to standards and formats (OGC compliance)

Consideration before generating Digital Map;

- Extent of the area
- Coordinate System
- Selection of Features
- Organization of features in database
- Feature codes and attribute values or parameters for each features
- Symbology for presentation

Basic Requirements;

- Hardware Equipments
- Software Application Soft ware
- Live ware Skilled man power

Why should we adopt Digital Technology?

- eliminate tedious repetitive manual work
- Speed up production
- increased productivity
- improve product quality
- allow new products to be developed
- flexibility in output, scale and design
- facilitate production process control
- enable the computer to analyze data

continued.....

- update the data base easily and quickly
- perform value addition (GIS Applications)
- easy and efficient archiving
- Selective (geographic extent or attribute wise)
- retrieval
- Facilitate Data integration and mosaicing

Which mode should we adopt?

Raster Or Vector ?

Depends on the purpose

Still for Structured data for GIS mostly Vector is prefered

Therefore by Digitization it is meant Vectorisation

Difference between Vector and Raster :

Criteria	Raster	Vector
Data Structure	Simple	Complex
Data Volume	Large	Small
Data Capture	Faster	Slower
Geometric Accuracy	Low	High
Feature wise organization	Scope limited	Scope wide
Individual Feature Selection, Extraction or Manipulation	Difficult	Easy
Symbolic presentation of features	Difficult	Easy

What are the methods to vectorise?

- i. With the help of Digitiser tablet / Digitiser table
- ii. Through scanning (to get a Raster Image)

- With the help of digitiser tablet is completely manual, tedius, Time consuming
- •Thus gradually becoming obsolet

Three ways of digitisation from raster;

- Complete Automatically
- Semi Automatically
- Manual Screen digitisation

What are the phases?

For Creation of Database;

- •Preparation
- Document Processing
- •Georeferencing
- Digitising (Vectorising)
- •Attribute Entry
- •Editing
- •Conversion to required or common Data Base format
- •Archiving

Symbolisation for presentation & Production

- •Editing
- •Archiving
- •Plate making for production

Thanks for your attention