Hands-on

Coral Reef mapping

Training Course on " Geospatial Techniques for coastal mapping and monitoring " 26th to 30th November, 2018

H. SHIVA KUMAR shivakumar.h@incois.gov.in

International Training Centre for operational Oceanography (ITCO), INCOIS, Hyderabad, India

Outline:

- Downloading satellite data from web
- Subset based on AOI
- Image Classification:
- Generation of Coral reef map
- Raster data opening in QGIS
- Raster Band Composition
- Change the band combination
- Adding data to band set
- Data Clipping
- Create the training input file
- Training sample extraction
- Image classification
- Data conversion from raster to vector
- Adding fields to attribute table
- Attribute data editing
- Vector data reclassification
- Vector data editing

Download Landsat data:

Go to <u>http://earthexplorer.usgs.gov/</u> and create new user account \rightarrow Landsat Archive \rightarrow set search criteria based on user place and accusation time of Landsat data \rightarrow Download tar file from Archive

Landsat 8 OLI+ band configuration:

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

Band	Wavelength	Useful for mapping
Band 1 – Coastal Aerosol	0.435 - 0.451	Coastal and aerosol studies
Band 2 – Blue	0.452 - 0.512	Bathymetric mapping, distinguishing soil from vegetation, and deciduous from coniferous vegetation
Band 3 - Green	0.533 - 0.590	Emphasizes peak vegetation, which is useful for assessing plant vigor
Band 4 - Red	0.636 - 0.673	Discriminates vegetation slopes
Band 5 - Near Infrared (NIR)	0.851 - 0.879	Emphasizes biomass content and shorelines
Band 6 - Short-wave Infrared (SWIR) 1	1.566 - 1.651	Discriminates moisture content of soil and vegetation; penetrates thin clouds
Band 7 - Short-wave Infrared (SWIR) 2	2.107 - 2.294	Improved moisture content of soil and vegetation and thin cloud penetration
Band 8 - Panchromatic	0.503 - 0.676	15 meter resolution, sharper image definition
Band 9 – Cirrus	1.363 - 1.384	Improved detection of cirrus cloud contamination
Band 10 – TIRS 1	10.60 - 11.19	100 meter resolution, thermal mapping and estimated soil moisture
Band 11 – TIRS 2	11.50 - 12.51	100 meter resolution, Improved thermal mapping and estimated soil moisture

Raster data opening in QGIS:

Raster Band Composition:

Raster Band Composition:

≻Open the FCC image

Change the band combination

Select the FCC image \rightarrow right click \rightarrow properties

Adding data to band set:

≻Go to plugins → manage and install plugin → Select Semi automatic classification and install
 ≻Go to SCP click on band set → SCP pugin window opens.

Define band set :

Go to SCP from main tool bar \longrightarrow Band set

Create the training input file:

Training sample extraction:

Now click on save temporary ROI to training inputCollect all training classes

Image classification:

- ≻Use Micro ID or class ID
- ≻Select algorithm
- Check the preview and click on activate classification preview pointer for preview
- \succ Clock on run \longrightarrow give the path to save classified image.

Data conversion from raster to vector:

DN.

Adding fields to attribute table :

≻Select Vector layer → right click → Open attribute table
≻In attribute window click on add field
≻Add field window opens → give the field name → Select the field type Length → ok

Attribute data editing

If we want give the name to all same class fields at a time:

Click on open attribute table

Vector data reclassification

Vector data editing

➢If we found any miss classification and wrong shape of feature using vector editing Tools we can modify.

>After finishing all the edits click on toggle editing>stop editing window opens click on save

