Hands-on

Coastal Risk Assessment (Tsunami)

Training Course on "Geospatial Techniques for Coastal Mapping and Monitoring " 26-30 November, 2018

Dr. P C Mohanty mohanty@incois.gov.in

International Training Centre for operational Oceanography (ITCO), INCOIS, Hyderabad, India

Over view Course:

- Tsunami scenario Data: Maximum wave height of historical events at the Indian ocean
 - Composite Maximum wave height of Sumatra (24 Dec,2004) and makran earthquake scenario (28 November 1945)
- > Extract hazard zone at each taluk level (administrative area of sub-district)
- Calculate Taluk wise mean value of wave height
- Generation of Tsunami hazard map

Tsunami Risk Assessment (Taluk Level):

Vector download and manipulation

Download Admin boundary data from <u>www.gadm.org</u> > open IND_ADM0.shp (Country) data > Convert Polygon to line> cut land part of boundary line using editing mod> save new line (Say Coast_line_IND0.shp)> Dissolve Coast_line_IND0.shp using line dissolve tool based on ID (under SAGA tool) to make single feature

Extraction Coastal Taluk:

Extract Coastal Taluk: Select Coastal Taluk from IND_ADM3.shp using Dissolve Coast_line_IND0.shp using select by location tool> after selection save new file (Say Coastal_IND_ADM3.shp

Extraction Tsunami wave Height

Extract Tsunami wave Height: create contour line (-5m) from GEBCO_BATHY.tif file using Specified contour from raster tool> split 1km segment using split line to shorter segment by length tool> generate split line to point using centroids tool> Extract Tsunami wave height at the point location using point sampling tool (Say TsunamiWaveHeight_pointLocation.shp)

Spatial Join of Tsunami Wave Height:

Transfer Tsunami wave height data to coast line: Open attribute of TsunamiWaveHeight_pointLocation.shp > for select valid point using select using attribute by command ("Zmax_SUMAT" is not NULL) and save new file (Say TsunamiWaveHeight_ValidPoints.shp) > create thiession polygon, input as Validpoint data> Intersect coastline(Dissloved_ind_adm.shp) with ThiessenPolygon using line-Polygon intersection tool (here split coastline w.r.t thiessen poly)> Join Zmax_value (i.e Tsunami wave height from Thiessen poly) to respective spited coast line) using join attribute by location tool (say ZMAX_COASTLINE_JOIN.shp)> Again Join Taluk Name to ZMAX_COASTLINE_JOIN.shp using join attribute by location tool save New Layer(Say Zmax_taluk_name. shp)

Tsunami Risk Map

Taluk level Statistics

Tsunami Risk Statistics Taluk Level: Extract length of each Split line from JOIN_ZMAX_TALUK_NAME.shp file using export geometry column tool> Calculate Statistics (Mean, Nin, Max and SD of Zmax and length of the coast in each taluk. Using Statistics by category tool (here calculate zmax value using the Taluk (Name 3) filed category

Taluk wise Statistics Table

	NAME_3	count	unique	min	max	range	sum	mean	median	
	Surat	61	6	0.60549	1.50769	0.90220	72.32794	1.18570	1.16769	
	Yanam	10	4	5.33479	7, 19099	1.85620	68.85101	6.88510	7,17652	
	Puducherry	66	9	5.92777	8.75787	2.83010	461.15691	6.98723	6.53204	
	Mahe	83	14	2.20824	3.77380	1.56556	251.76064	3.03326	3.01584	
	Baleshwar	83	23	2.32126	3. <mark>5</mark> 2501	1.20375	237.54655	2.86201	2.92768	
	Navsari	54	12	0.76017	1.96095	1.20078	69.563 <mark>4</mark> 4	1.28821	1.347 <mark>4</mark> 8	
	Gandevi	12	2	0.82694	0.93154	0.10460	10.44628	0.87052	0.82694	
	Mumbai Suburban	149	14	1.19703	1.93687	0.73984	217.05961	1,45678	1.41885	
	Bombay	103	10	0.83357	1.73870	0.90513	124.05541	1.20442	1,17021	
)	Bhadrak	55	15	2.41362	4. 16 <mark>47</mark> 3	1.75111	176.37081	3.20674	3.27423	
i.	Jagatsinghpur	301	32	3.82632	6.94264	3.11632	1457.39474	<mark>4.84184</mark>	4.77745	
2	Porbandar	308	42	0.70987	1.47571	0.76584	350.61323	1.1 <mark>3</mark> 835	1, 13493	
3	Chatrapur	72	13	3.40198	9.305 <mark>4</mark> 5	5.90347	374.34807	5. 19928	5.09249	
4	Brahmapur	88	14	4.067 <mark>3</mark> 6	7.66391	3.59655	532.04401	6.0 <mark>4595</mark>	6.15887	
5	Kendraparha	547	38	2.62040	5.16259	2.54219	2098.49238	3.8 <mark>3</mark> 637	3.66175	
5	Ranavav	35	6	0.84929	1. <mark>4</mark> 7571	0.62642	42.16312	1.20466	1.07431	
7	Lakshadweep	21	6	2.04904	3.20271	1.15367	60.07958	2.86093	2.85329	
3	Mandvi	106	21	0.56801	1.09529	0.52728	80.89340	0.76315	0.70307	
9	Minicoy Island	2	1	3.43471	3. <mark>434</mark> 71	0.00000	6.86942	3.43471	3. <mark>434</mark> 71	

Thank you