Hands-on

Coastal Risk Assessment (Storm Surge)

Training Course on "Geospatial Techniques for Coastal Mapping and Monitoring " 26-30 November, 2018

Dr. P C Mohanty mohanty@incois.gov.in

International Training Centre for operational Oceanography (ITCO), INCOIS, Hyderabad, India

Over view of Course

- Maximum Wave height due to Phailin cyclone South Orissa coast
- Extract Wave height either side of the cyclonic land fall point
- Create buffer (multi buffer zone: 2, 5, 10, 20, 30, 40, 50, 100km) around the land fall point
- Calculate Statistics w.r.t different zone
- Generation of storm hazard map

Import cyclone track data of CSV file to .shp file :

 Go to layer>add layer>delimited text layer> New window will pop-up> open CSV(MS-DOS) and enter long and lat Coolum> file save as .shp file. > add coordinate to point > save new file (Say Cyclone_track.shp)

Locate Land Fall point and create multiple Buffer

 Go to layer>add layer>delimited text layer> New window will pop-up> open CSV(MS-DOS) and enter long and lat Coolum> file save as .shp file. > add coordinate to point > save new file (Say Cyclone_track.shp)

Multi-Buffer:

- Draw every 10km interval buffer line using Variable distance buffer tool [insert buffer distance as 0.045 (field has to create), scale factor 60 and no. of buffer line is 30]
- Split Buffer into two part to divided left and right side of the cyclone track using editing mode

Storm Surge Extraction

Extract storm surge Height: create contour line (-5m) from GEBCO_BATHY.tif file using Specified contour from raster tool> split 1km segment using split line to shorter segment by length tool> generate split line to point using centroids tool> Extract storm surge height at the point location using point sampling tool (Say StormSurgeHeight_pointLocation.shp)

Calculation Risk Rating

Create New Field> Select Left and right side of the buffer and Name them using concat string calculator

Generate Hazard Maps

Extraction of Statistics

Calculate Statistics (Mean, Nin, Max and SD of Zmax and length of the coast in each taluk. Using Statistics by category tool (here calculate zmax value using the Buffer (RightLeft) filed category

Zonewise Statistics Table

RightLeft	count	unique	min	max	range	sum	mean	median	
9_R	10	1	1.07623	1.07623	0.00000	10.76230	1.07623	1.07623	
9_L	10	3	0.57890	0.60304	0.02414	5.84811	0.58481	0.57890	
8_R	11	2	1.23814	1.27284	0.03470	13.72364	1.24760	1.23814	
8_L	11	1	0.60304	0.60304	0.00000	6.633 <mark>4</mark> 4	0.60304	0.60304	
7_R	11	2	1.27284	1. <mark>4</mark> 8361	0.21077	15.89817	1.44529	1.48361	
7_L	12	3	0.60304	0.75173	0.14869	8.69309	0.72442	0.75173	
6_R	12	3	1. <mark>4</mark> 8361	1.56951	0.08590	18.50266	1.54189	1.55107	
6_L	12	3	0.75173	1.011 <mark>0</mark> 4	0.25931	10.50921	0.87577	0.87015	
5_R	14	3	1.56951	1.71505	0.14554	23.05731	1.64695	1.63982	
5_L	34	5	1.01104	1.63982	0.62878	48.85141	1.43681	1. <mark>44</mark> 561	
1 31_R	35	6	0.90011	1.18860	0.28849	36.16794	1.03337	0.99742	
2 31_L	11	2	0.51435	0.52635	0.01200	5.77785	0.52526	0.52635	
30_R	10	2	0.86127	0.92746	0.06619	8.94365	0.89436	0.89436	
4 30_L	11	2	0.52635	0.53643	0.01008	5.88057	0.53460	0.53643	
5 29_R	10	2	0.82221	0.86127	0.03906	8.41740	0.84174	0.84174	
5 <mark>29_L</mark>	11	3	0.53643	0.53944	0.00301	5.90871	0.53716	0.53714	
7 28_R	11	2	0.78243	0.78728	0.00485	8.61158	0.78287	0.78243	
3 <mark>28_L</mark>	12	3	0.53629	0.53726	0.00097	6.44507	0.53709	0.53714	
9 27_R	12	2	0.76075	0.78728	0.02653	9.20859	0.76738	0.76075	

Thank you