Dr. Linta Rose

rose.l@incois.gov.in

- □ Methods of describing the characteristics of a data set.
- □ Useful because they allow you to make sense of the data.
- Helps exploring and making conclusions about the data in order to make rational decisions.
- Includes calculating things such as the average of the data, its spread and the shape it produces.

- Descriptive statistics involves describing, summarizing and organizing the data so it can be easily understood.
- □ **Graphical displays** are often used along with the quantitative measures to enable clarity of communication.

Describing data

• Qualitative data-

the variable which yield non numerical data.

- E.g.- education, marital status, eye colour
- Frequency- number of observations falling into particular class/ category of the qualitative variable.
- Frequency distribution- table listing all classes & their frequencies.
- Graphical representation- Pie chart, Bar graph.

Describing data

• Quantitative data-

- Can be presented by a frequency distribution.
- If the discrete variable has a lot of different values, or if the data is a continuous variable then data can be grouped into classes/ categories.
- Class interval / BINS- covers the range between maximum & minimum values.
- Class limits- end points of class interval.
- Class frequency- number of observations in the data that belong to each class interval.
- Usually presented as a Histogram or a Bargraph.

Frequency Distribution and Histogram

12 - 21 8 21 - 30 6 30 - 39 6 39 - 48 6	Histogram of Data
21 - 30 6 30 - 39 6 39 - 48 6	Histogram of Data
30 - 39 6 39 - 48 6	Histogram of Data
39 - 48 6 8	•
48 - 57 2 7	
57 – 66 2 § 5	

1 .

Data

- When analyzing a graphical display, you can draw conclusions based on several characteristics of the graph.
- **You may ask questions such ask:**
 - Where is the approximate middle, or center, of the graph?
 - How spread out are the data values on the graph?
 - What is the overall shape of the graph?
 - Does it have any interesting patterns?

Normal Distribution

Data can be "distributed" (spread out) in different ways.

But there are many cases where the data tends to be around a central value with no bias left or right, and it gets close to a "Normal Distribution" like this:

A Normal Distribution

The "Bell Curve" is a Normal Distribution. And the yellow histogram shows some data that follows it closely, but not perfectly (which is usual).

It is often called a "Bell Curve" because it looks like a bell.

Many things closely follow a Normal Distribution:

- heights of people
- size of things produced by machines
- errors in measurements
- blood pressure
- marks on a test

The following measures are used to describe a data set:

- Measures of position (also referred to as central tendency or location measures).
- Measures of spread (also referred to as variability or dispersion measures).
- □ Measures of shape.

- If assignable causes of variation are affecting the process, we will see changes in:
 - Position.
 - Spread.
 - Shape.
 - Any combination of the three.

Measures of Position:

- Position Statistics measure the data central tendency.
- Central tendency refers to where the data is centered.
- □ You may have calculated an average of some kind.
- Despite the common use of average, there are different statistics by which we can describe the average of a data set:
 - Mean.
 - Median.
 - Mode.

Measures of center

- Central tendency- In any distribution, majority of the observations *pile up*, or *cluster around* in a particular region.
- Mean- sum of observed values in a data divided by the number of observations
- □ Median- observation in the data set that divides the data set into half.
- □ **Mode** value of the data set which occurs with greatest frequency
- Mean & Median can be applied only to Quantitative data
- Mode can be used either to Qualitative or Quantitative data.
- Outlier- observation that falls far from the rest of the data. Meangets highly influenced by the outlier.

Mean:

- The total of all the values divided by the size of the data set.
- □ It is the most commonly used statistic of position.
- □ It is easy to understand and calculate.
- It works well when the distribution is symmetric and there are no outliers.
- □ The mean of a sample is denoted by 'x-bar'.
- **\Box** The mean of a population is denoted by ' μ '.

Median:

- The middle value where exactly half of the data values are above it and half are below it.
 Median Median
- □ Less widely used.
- A useful statistic due to its robustness.
- □ It can reduce the effect of outliers.
- Often used when the data is nonsymmetrical.
- Ensure that the values are ordered before calculation.
- With an even number of values, the median is the mean of the two middle values.

Median Calculation:

23
33
34
36
38
40
41
41
44

12
30
31
37
38
40
41
41
44
45

Median = 38 + 40 / 2 = 39

Example 1,2,1,1,3,4,100 Mean = 16 median = 2 mode = 1

Assume 100 is an outlier Mean =2 median = 1.5 mode = 1

Mode:

- □ The value that occurs the most often in a data set.
- □ It is rarely used as a central tendency measure
- It is more useful to distinguish between unimodal and multimodal distributions
 - When data has more than one peak.

Normal distribution

□ Bell shaped symmetric distribution.

□ Why is it important?

□ Many things are normally distributed, or very close to it.

□ It is easy to work with mathematically

Most inferential statistical methods make use of properties of the normal distribution.

□ Mean = Median = Mode

Measures of Spread:

- The Spread refers to how the data deviates from the position measure.
- □ It gives an indication of the amount of variation in the process.
 - An important indicator of quality.
 - Used to control process variability and improve quality.
- All manufacturing and transactional processes are variable to some degree.
- There are different statistics by which we can describe the spread of a data set:
 - Range.
 - Standard deviation.

Standard Deviation:

- □ The average distance of the data points from their own mean.
- A low standard deviation indicates that the data points are clustered around the mean.
- A large standard deviation indicates that they are widely scattered around the mean.
- The standard deviation of a sample is denoted by 's'.
- The standard deviation of a population is denoted by "μ".

Standard Deviation:

- Perceived as difficult to understand because it is not easy to picture what it is.
- □ It is however a more robust measure of variability.
- □ Standard deviation is computed as follows:

Range:

- □ The difference between the highest and the lowest values.
- □ The simplest measure of variability.
- Often denoted by 'R'.
- □ It is good enough in many practical cases.
- □ It does not make full use of the available data.
- It can be misleading when the data is skewed or in the presence of outliers.
 - Just one outlier will increase the range dramatically.

Measures of Shape:

- Data can be plotted into a histogram to have a general idea of its shape, or distribution.
- □ The shape can reveal a lot of information about the data.

Shape

Skewness- Lack of **symmetry** in distribution. It can be interpreted from frequency distribution.

□ Properties-

- □ Mean, median & mode fall at different points.
- Curve is not symmetrical but stretched more to one side.
- □ Distribution may be **positively or negatively skewed**. Limits for coefficient of skewness is ± 3.

□ **Kurtosis**- convexity of a curve.

- Gives an idea about the **flatness/ peakedness** of the curve.
- Gives an idea about how much weights are at the tail end of the distribution

Measures of Shape:

- □ It may be symmetrical or nonsymmetrical.
- In a symmetrical distribution, the two sides of the distribution are a mirror image of each other.
- □ Examples of **symmetrical** distributions include:
 - Uniform.
 - Normal.
 - Camel-back.

Measures of Shape:

- The shape helps identifying which descriptive statistic is more appropriate to use in a given situation.
- If the data is symmetrical, then we may use the mean or median to measure the central tendency as they are almost equal.
- If the data is skewed, then the median will be a more appropriate to measure the central tendency.
- Two common statistics that measure the shape of the data:
 - Skewness.
 - Kurtosis.

Skewness:

- Describes whether the data is distributed symmetrically around the mean.
- □ A skewness value of zero indicates perfect symmetry.
- □ A negative value implies left-skewed data.
- □ A positive value implies right-skewed data.

Kurtosis:

- Measures the degree of flatness (or peakness) of the shape.
- When the data values are clustered around the middle, then the distribution is more peaked.
 - A greater kurtosis value.
- When the data values are spread around more evenly, then the distribution is more flatted.
 - A smaller kurtosis values.

Further Information:

- □ Variance is a measure of the variation around the mean.
- It measures how far a set of data points are spread out from their mean.
- □ The units are the square of the units used for the original data.
 - For example, a variable measured in meters will have a variance measured in meters squared.
- □ It is the square of the standard deviation. Variance = s^2

Some Formulas

Standard Error of Means vs Standard Deviation

- The **standard error** (SE) of a **statistic** is the approximate **standard** deviation of a **statistical** sample population.
- the mean and standard deviation are descriptive statistics, whereas the standard error of the mean is descriptive of the random sampling process.
- the **standard error** of the sample mean is an estimate of how far the sample mean is likely to be from the population mean, whereas the **standard deviation** of the sample is the degree to which individuals within the sample differ from the sample mean.